
 Wireless Universal Serial Bus Specification, Revision 1.1

Wireless Universal Serial Bus

Specification 1.1

Hewlett-Packard

Intel

LSI

Microsoft

NEC

Samsung

ST-Ericsson

September 9, 2010

 Revision 1.1

 Wireless Universal Serial Bus Specification, Revision 1.1

3

Scope of this Revision

The 1.1 revision of the specification is intended for product design. Every attempt has been made to ensure a
consistent and implementable specification. Implementations should ensure compliance with this revision.

Revision Date Comments

0.9 December 29, 2004 Incremental update with significant additions throughout the major
chapters, including finalization of isochronous header for data
packets, definition of explicit device disconnect mechanisms and
details on directed beaconing devices, device and host power
management, updates to wire adapter isochronous streaming model
and radio control interface, to name a few.

0.91
0.91a

January 21, 2005
January 22, 2005

Incremental update from comments on the 0.9. Of particular note is a
better device state machine, new isochronous out examples and a
security mechanisms overview in the data flow chapter. Revision
0.91a includes a 0.9b revision of the protocol chapter, which was
omitted from 0.91 draft.

0.95 Feburary 24, 2005 Incremental update from comments to the 0.91a. Of particular note is
a new ‘active’ disconnect detection model, the addition of explicit
mechanisms for transmit power control, updates to the security and
wire adapter chapters.

0.96 March 11, 2005 Incremental update from comments to 0.95. Significant updates to
wire adapter and new commands added to the framework.

1.0 rc March 31, 2005 Incremental updates to improve consistency and accuracy, better
examples and improved readability.

1.0 rc2 April 27, 2005 Final updates of technical issues and pagination completed.

1.0 May 12, 2005 Final specification.

0.75 Rev 1.1 Feb 20 2008 0.75 Revsion of the Wireless USB 1.1 Specification

0.89 Rev 1.1 Feburary 4, 2010 0.89 Revision of the Wireless USB 1.1Specification

0.9RC rev 1.1 March 4, 2010 0.90 Revision of the Wireless USB 1.1 Specification

0.95 rev 1.1 April 15, 2010 0.95 RC5 Revision of the Wireless USB 1.1 Specification

1.1 September 9, 2010 Approved for publication

Wireless Universal Serial Bus Specification

Copyright © 2010, LSI Corporation, Hewlett-Packard Company,
Intel Corporation, Microsoft Corporation, NEC Corporation,

ST-Ericsson, Samsung Electronics Co., Ltd.
All rights reserved.

INTELLECTUAL PROPERTY DISCLAIMER

THIS SPECIFICATION IS PROVIDEDE TO YOU “AS IS” WITH NO WARRANTIES
WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY, NON-
INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE. THE AUTHORS OF THIS
SPECIFICATION DISCLAIM ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT
OF ANY PROPRIETARY RIGHTS, RELATING TO USE OR IMPLEMENTATION OF
INFORMATION IN THIS SPECIFICATION. THE PROVISION OF THIS SPECIFICAITON TO YOU
DOES NOT PROVIDE YOU WITH ANY LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR
OTHERWISE, TO ANY INTELLECTURAL PROPERTY RIGHTS.

 Wireless Universal Serial Bus Specification, Revision 1.1

4

All product names are trademarks, registered trademarks, or servicemarks of their respective owners.

Please send comments via electronic mail to techsup@usb.org
For industry information, refer to the USB Implemnters Forum web page at http://www.usb.org

Acknowledgement of Wireless USB Technical Contribution

The authors of this specification would like to recognize the following people who participated in the Wireless
USB Key Developers technical working groups. We would also like to thank other Wireless USB Promoter
companies and throughout the industry who contributed to the development of this specification.

Contributor, V1.0 Organization & role

John Howard Intel Corporation (chair: protocol/editor)

John Keys Intel Corporation (chair: security/editor)

Dan Froelich Intel Corporation (chair: isochronous/editor)

Masami Katagiri NEC Corporation

David Thompson Agere

Ed Beeman Hewlett Packard

Brad Hosler Intel Corporation (editor: architecture, overview)

Abdul (Rahman) Ismail Intel Corporation (editor: wire adaptor)

James J. Choate Intel Corporation

Fred Bhesania Microsoft Corporation

Randy Aull Microsoft Corporation

Glen Slick Microsoft Corporation

Mark Maszak Microsoft Corporation

Masahiro Noda NEC Corporation

Hiromitsu Sakamoto NEC Corporation

Masao Manabe NEC Corporation

Bart Vertenten Royal Philips Electronics

Kawshol Shama Royal Philips Electronics

Hilbert Zhang Royal Philips Electronics

Jay O’Conor Royal Philips Electronics

Young Kim Royal Philips Electronics

Takashi Sato Royal Philips Electronics

Larry Taylor Staccato Communications

Shyam Narayanan Staccato Communications

Tim Gallagher Staccato Communications

Bill Long Staccato Communications

Valerio Filauro Staccato Communications

Matt Myers Synopsys

Jin-Meng Ho Texas Instruments

Sue Vining Texas Instruments

 Wireless Universal Serial Bus Specification, Revision 1.1

5

Yaser Ibrahim Texas Instruments

Haim Kupershmidt Wisair

Ran Hay Wisair

Contributor, V1.1 Organization & role

Rahman Ismail Intel Corportion (chair)

John Howard Intel Corporation (editor)

Randal Erman Alereon

Peter Groset Alereon

Joe Decuir CSR (editor)

Phil Hardy CSR

Samson Pynadath CSR

Jason Oliver MCCI

Randy Aull Microsoft Corporation

Vivek Gupta Microsoft Corporation

Jeremy Anscomb Nokia

Richard Petrie Nokia

Bart Vertenten NXP

Tom sun NXP

Clint Chaplin Samsung

Sundaresan Swaminathan Samsung

Inanc Inan Realtek

Venkatesh Rajendran Realtek (editor, Association)

Andrew Jackson Staccato Communications

Vaibhav Malik Staccato Communications

William Stoye Staccato Communications

Richard Skeen Staccato Communications

Sachin Athalye ST Ericsson

Charles Razzell ST Ericsson

Kawshol Devilal Sharma ST Ericsson

Matt Myers Synopsys (chair, WiMedia Allignment WG)

Qiangwen Wang Synopsys

Brian Doherty WiQuest

Simcha Aronson Wisair

Udi Ashkenazi Wisair

Haim Kupershmidt Wisair

Ilia Saveliev Wisair

 Wireless Universal Serial Bus Specification, Revision 1.1

7

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION ... 13

1.1 Motivation ... 13

1.2 Design Goals .. 14

1.3 Objective of the Specification .. 14

1.4 Scope of the Document ... 14

1.5 USB Product Compliance .. 15

1.6 Document Organization ... 15

CHAPTER 2 TERMS, CONVENTIONS AND REFERENCES 17

2.1 Terms ... 17

2.2 Conventions: .. 21

2.3 References .. 22

CHAPTER 3 ARCHITECTURAL OVERVIEW .. 23

3.1 USB System Description ... 23
3.1.1 Topology ... 23

3.2 Physical Interface .. 25
3.2.1 Physical Layer Data Rates .. 25
3.2.2 Physical Layer Channel Support ... 25
3.2.3 Physical Layer Channel Selection .. 25

3.3 Power Management .. 25

3.4 Bus Protocol .. 25

3.5 Robustness ... 26
3.5.1 Error Handling .. 26

3.6 Security .. 26

3.7 System Configuration ... 26
3.7.1 Attachment of Wireless USB Devices .. 27
3.7.2 Connect to me ... 27
3.7.3 Removal of Wireless USB Devices .. 27
3.7.4 Bus Enumeration .. 27

3.8 Data Flow Types ... 27

3.9 Wireless USB Devices ... 27

 Wireless Universal Serial Bus Specification, Revision 1.1

8

3.9.1 Device Characterizations .. 28
3.9.2 Devices and MAC Layer .. 28

3.10 Wireless USB Host: Hardware and Software .. 28

CHAPTER 4 DATA FLOW MODEL .. 30

4.1 Implementer Viewpoints .. 30

4.2 Communications Topology .. 30
4.2.1 Physical Topology .. 31

4.3 Wireless USB Communication Flows .. 32
4.3.1 Wireless USB Channel Time .. 34
4.3.2 MMC Transmission Accuracy .. 35
4.3.3 USB Time across Device Wire Adapters .. 35
4.3.4 Device and Application Co-existence ... 36
4.3.5 Device Endpoints .. 37
4.3.6 Wireless USB Information Exchange Methods .. 37
4.3.7 Device Perspective .. 38
4.3.8 Host Perspective ... 38

4.4 Data Transfers .. 43
4.4.1 Burst Mode Data Phase ... 45

4.5 Bulk Transfers .. 46
4.5.1 Bulk Transfer Packet Size and Signaling Rate Constraints .. 46
4.5.2 Bulk Transfer Channel Access Constraints .. 47
4.5.3 Bulk Transfer Data Sequences .. 48

4.6 Interrupt Transfers .. 48
4.6.1 Low Power Interrupt IN .. 48
4.6.2 Interrupt Transfer Packet Size and Signaling Rate Constraints .. 49
4.6.3 Interrupt Transfer Channel Access Constraints .. 50
4.6.4 Interrupt Transfer Data Sequences .. 51

4.7 Isochronous Transfers .. 51
4.7.1 Isochronous Transfer Packet Size and Signaling Rate Constraints ... 52
4.7.2 Isochronous Transfer Channel Access Constraints ... 53
4.7.3 Isochronous Transfer Data Sequences .. 54
4.7.4 Isochronous Endpoint Host System Admission Decisions ... 54
4.7.5 Isochronous Data Discards ... 55

4.8 Control Transfers ... 56
4.8.1 Control Transfer Packet Size and Signaling Rate Constraints .. 56
4.8.2 Control Transfer Channel Access Constraints .. 56
4.8.3 Control Transfer Data Sequences ... 57
4.8.4 Data Loopback Commands ... 57

4.9 Device Notifications .. 58

4.10 Media Reliability Considerations .. 58
4.10.1 Transmit Power Control .. 59
4.10.2 Adjustments to Data Phase Packet Payload Sizes ... 61
4.10.3 Adjustments to Transmit Bit Rate ... 62

 Wireless Universal Serial Bus Specification, Revision 1.1

9

4.10.4 Changing PHY Channel .. 62
4.10.5 Host Schedule Control .. 63
4.10.6 Dynamic Bandwidth Interface Control ... 63
4.10.7 Continuously Scalable Dynamic Switching Endpoint .. 65

4.11 Special Considerations for Isochronous Transfers .. 65
4.11.1 Summary Of Key Features Of USB Wired Isochrony .. 65
4.11.2 UWB Media Characteristics ... 67
4.11.3 Wireless USB Isochronous Transfer Level Protocol .. 69
4.11.4 Wireless USB Isochronous IN Example ... 69
4.11.5 Wireless USB Isochronous OUT Example ... 72
4.11.6 Choosing an Isochronous IN or Isochronous OUT Endpoint Buffer Size 74
4.11.7 Isochronous OUT endpoint receiver implementation options .. 74
4.11.8 Synchronization .. 76
4.11.9 Error Handling Details .. 77

4.12 Device Reset ... 79

4.13 Connection Process ... 79
4.13.1 Reconnection Process ... 81
4.13.2 Connect to me ... 81

4.14 Disconnect .. 82

4.15 Security Mechanisms .. 84
4.15.1 Connection Lifetime ... 84
4.15.2 Host Security Considerations .. 84

4.16 Wireless USB Power Management .. 84
4.16.1 Device Power Management .. 85
4.16.2 Host Power Management .. 90

4.17 Dual Role Devices (DRD) ... 93
4.17.1 Discovery of DRD Host to establish link .. 94
4.17.2 DRD User-instructed Discovery Process .. 94
4.17.3 DRD Automatic Discovery Process .. 95
4.17.4 DRD Host Negotiation Protocol (DRD-HNP) .. 95

CHAPTER 5 PROTOCOL LAYER ... 98

5.1 Packet Formats ... 98

5.2 Wireless USB Transaction Groups .. 103
5.2.1 Wireless USB Channel Time Allocation Information Elements... 104

5.3 Transaction Group Timing Constraints ... 110
5.3.1 Streaming-Mode Inter-packet Constraints for the PHY .. 112
5.3.2 Protocol Synchronization .. 112

5.4 Data Burst Synchronization and Retry ... 113

5.5 Wireless USB Transactions .. 119
5.5.1 Isochronous Transactions ... 121
5.5.2 Control Transfers .. 122
5.5.3 Device Notifications ... 124

 Wireless Universal Serial Bus Specification, Revision 1.1

10

5.5.4 Flow Control ... 125

5.6 Physical and Media-Access Layer Specific Characteristics .. 126

CHAPTER 6 WIRELESS USB SECURITY .. 130

6.1 Introduction .. 130
6.1.1 Goal of USB Security ... 130
6.1.2 Security and USB ... 130

6.2 Overview .. 130
6.2.1 Base of Trust ... 130
6.2.2 Preserve the Nature of the USB Device Model .. 131
6.2.3 Implementation of Security Extensions .. 131
6.2.4 Encryption Methods .. 132
6.2.5 Message Format .. 132
6.2.6 Encryption Keys ... 132
6.2.7 Correct key determination .. 133
6.2.8 Replay Prevention ... 133
6.2.9 Secure Packet Reception ... 134
6.2.10 General Connection Model ... 134
6.2.11 Key Management .. 137

6.3 Association and Authentication ... 138
6.3.1 Connection and Reconnection Requests ... 139
6.3.2 Authentication ... 139

6.4 Interfacing to AES-128 CCM .. 143
6.4.1 CCM nonce Construction ... 143
6.4.2 l(m) and l(a) Calculation ... 143
6.4.3 Counter-mode Bx Blocks .. 144
6.4.4 Encryption Ax Blocks ... 144

6.5 Pseudo-Random Function Definition .. 144
6.5.1 Key Derivation .. 145
6.5.2 Out-of-band MIC Generation ... 146
6.5.3 Example Random Number Generation ... 146

CHAPTER 7 WIRELESS USB FRAMEWORK .. 148

7.1 Wireless USB Device States ... 148
7.1.1 UnConnected .. 149
7.1.2 UnAuthenticated ... 149
7.1.3 Authenticated .. 150
7.1.4 Reconnecting .. 151

7.2 Generic Wireless USB Device Operations .. 151

7.3 Standard Wireless USB Device Requests.. 151
7.3.1 Wireless USB Extensions to Standard Requests ... 152
7.3.2 Security-related Requests ... 161

7.4 Standard Wireless USB Descriptors ... 168
7.4.1 Device Level Descriptors .. 168

 Wireless Universal Serial Bus Specification, Revision 1.1

11

7.4.2 Configuration .. 172
7.4.3 Endpoint .. 173
7.4.4 Wireless USB Endpoint Companion .. 177
7.4.5 Security-Related Descriptors .. 180

7.5 Wireless USB Channel Information Elements ... 181
7.5.1 Wireless USB Connect Acknowledge IE .. 184
7.5.2 Wireless USB Host Information IE .. 184
7.5.3 Wireless USB Channel Change Announcement IE .. 185
7.5.4 Wireless USB Device Disconnect IE .. 186
7.5.5 Wireless USB Host Disconnect IE ... 186
7.5.6 Wireless USB Work IE ... 187
7.5.7 Wireless USB Channel Stop IE .. 187
7.5.8 Wireless USB Device Keepalive IE ... 188
7.5.9 Wireless USB Reset Device IE ... 188
7.5.10 Wireless USB Device Sleep IE ... 188
7.5.11 Wireless USB Master MMC IE .. 189
7.5.12 Wireless USB Connect NAK IE ... 190

7.6 Device Notifications .. 190
7.6.1 Device Connect (DN_Connect) .. 192
7.6.2 Device Disconnect (DN_Disconnect) ... 194
7.6.3 Device Endpoints Ready (DN_EPRdy) .. 194
7.6.4 Device Sleep (DN_Sleep) ... 196
7.6.5 Device Alive (DN_Alive) ... 196
7.6.6 Device Power Indication (DN_PWR) ... 197
7.6.7 Other Host Connect-to-Me Notifications (DN_OtherHostConnectReq) 197

7.7 MAC Layer-Specific Information/Framework .. 198
7.7.1 Host MAC Layer Responsibilities .. 198
7.7.2 Device MAC Layer responsibilities .. 198
7.7.3 Wireless USB Bandwidth Reservation Policy .. 200
7.7.4 Host Rules ... 201
7.7.5 Device Rules ... 202
7.7.6 Reservation Related Parameters ... 203
7.7.7 Connection specific IE’s ... 203

CHAPTER 8 WIRE ADAPTER .. 209

8.1 DWA Operational Model ... 209
8.1.1 DWA Functional Characteristics .. 209
8.1.2 DWA Data Transfer Interface ... 210
8.1.3 Remote Pipe .. 211
8.1.4 Device Wire Adapter Functional Blocks .. 213
8.1.5 Downstream Port(s) .. 214
8.1.6 Upstream Port ... 214
8.1.7 Downstream Host Controller .. 214
8.1.8 Upstream Endpoint Controller .. 214
8.1.9 Explicit Transfer Request / Result Operation, Overview .. 215
8.1.10 Transparent RPipe Operation, Overview .. 218
8.1.11 Concatenation and Aggregation of Transfer Requests and Data, Transfer Results and Data, and DWA
Notifications ... 218
8.1.12 DWA Suspend and Resume .. 219
8.1.13 DWA Reset Behavior ... 219
8.1.14 Device Control .. 220

 Wireless Universal Serial Bus Specification, Revision 1.1

12

8.1.15 Buffer Configuration and Management .. 220
8.1.16 DWA Requests ... 221
8.1.17 Notification Information ... 237
8.1.18 DWA Interfaces, Descriptors and Control .. 237

8.2 HWA Operational Model ... 257
8.2.1 HWA Functional Characteristics .. 257
8.2.2 HWA Data Transfer Interface ... 258
8.2.3 Remote Pipe .. 259
8.2.4 Host Wire Adapter Functional Blocks .. 260
8.2.5 Upstream Port ... 260
8.2.6 Downstream Host Controller .. 260
8.2.7 Upstream Endpoint Controller .. 260
8.2.8 Remote Pipe Controller .. 261
8.2.9 HWA Suspend and Resume .. 263
8.2.10 HWA Reset Behavior ... 264
8.2.11 Device Control .. 264
8.2.12 Buffer Configuration... 264
8.2.13 HWA Requests ... 265
8.2.14 Notification Information ... 283
8.2.15 HWA Interfaces, Descriptors and Control .. 283
8.2.16 Radio Control Interface .. 294

APPENDIX A WIRELESS USB CCM TEST VECTORS .. 298

APPENDIX B WIRE ADAPTER EXAMPLE DESCRIPTOR SETS 301

APPENDIX C BACKWARD COMPATIBILITY REQUIREMENTS 315

APPENDIX D UWB CHANNEL SELECTION .. 321

 Wireless Universal Serial Bus Specification, Revision 1.1

 13

Chapter 1
Introduction

1.1 Motivation
The original motivation for the Universal Serial Bus (USB) came from several considerations, two of the most
important being:

 Ease-of-use
The lack of flexibility in reconfiguring the PC had been acknowledged as the Achilles’ heel to its further
deployment. The combination of user-friendly graphical interfaces and the hardware and software
mechanisms associated with new-generation bus architectures have made computers less confrontational
and easier to reconfigure. However, from the end user’s point of view, the PC’s I/O interfaces, such as
serial/parallel ports, keyboard/mouse/joystick interfaces, etc., did not have the attributes of plug-and-play.

 Port expansion
The addition of external peripherals continued to be constrained by port availability. The lack of a bi-
directional, low-cost, low-to-mid speed peripheral bus held back the creative proliferation of peripherals
such as storage devices, answering machines, scanners, PDA’s, keyboards, mice, etc. Existing
interconnects were optimized for one or two point products. As each new function or capability was added
to the PC, a new interface had been defined to address this need.

Initially, USB provided two speeds (12Mb/s and 1.5Mb/s) that peripherals could use. But, as PCs became
increasingly powerful and able to process vast amounts of data, users needed to get more and more data into and
out of their PCs. USB 2.0 was defined in 2000 to provide a third transfer rate of 480Mb/s while retaining
backward compatibility.

Since then, USB has arguably become the most successful PC peripheral interconnect ever defined. At this
writing, over a billion USB hosts or devices are sold annually. End users ‘know’ what USB is. Product
developers understand the infrastructure and interfaces necessary to build a successful product. USB has gone
beyond just being a way to connect peripherals to PCs. Printers use USB to interface directly to cameras.
PDAs use USB connected keyboards and mice. The USB On-The-Go definition, provides a way for two host-
capable devices to be connected and negotiate which one will operate as the ‘host’. USB, as a protocol, is also
being picked up and used in many non-traditional applications such as industrial automation.

Now, as technology innovation marches forward, wireless technologies are becoming more and more capable
and cost effective. Standard (Ecma-368) Ultra-WideBand (UWB) radio technology, in particular, has
characteristics that match traditional USB usage models very well. UWB supports high bandwidth (480Mb/s)
but only at limited range (~3 meters). Applying this wireless technology to USB frees the user from worrying
about cables; where to find them, where to plug them in, how to string them so they don’t get tripped over, how
to arrange them so they don’t look like a mess, … It makes USB even easier to use. Because no physical ports
are required, port expansion, or even finding a USB port, is no longer a problem.

Further, as modern computing migrates from desktops PCs to notebooks to smaller netbooks and smart phone
form factors, the space available for external connectors, including USB A host connectors, becomes scarce.
Wireless USB enables peripheral connectivity for hand held devices.

Of course, losing the cable also means losing a source of power for peripherals. For self-powered devices, this
isn’t an issue. But for portable, bus-powered devices, Wireless USB presents some challenges where creative
minds will provide innovative solutions that meet their customers’ needs.

USB (wired or wireless) continues to be the answer to connectivity for the PC architecture. It is a fast, bi-
directional, isochronous, low-cost, dynamically attachable interface that is consistent with the requirements of
the PC platform of today and tomorrow.

 Wireless Universal Serial Bus Specification, Revision 1.1

14

1.2 Design Goals
Wireless USB is a logical evolution of USB. The goal is that end users view it as the same as wired USB, just
without the wires. Several key design areas to meet this goal are listed below.

 Leverage the existing USB infrastructure. There are a large number of USB products being used today. A
large part of their success can be traced to the existence of stable software interfaces, easily developed
software device drivers, and a number of generic standard device class drivers (HID, Mass Storage, audio,
etc.) Wireless USB is designed to keep this software infrastructure intact so that developers of peripherals
can continue to use the same interfaces and leverage all of their existing development work.

 Preserve the USB model of smart host and simple device. Even though wireless technology introduces
complexity, the Wireless USB architecture continues to have a significant split in responsibility between
host and device. Wireless USB is designed to keep devices as simple as possible and let the host manage as
much of the complexity as possible.

 Provide effective power management mechanisms. Without wires, many more traditional USB devices
will have to run on batteries. Wireless USB is designed to allow devices to be as power efficient as
possible, providing explicit times when radios need to be on so that radios can be in lower power modes
otherwise.

 Provide security. Wireless USB is designed to provide a comparable amount of security to that which users
enjoyed with wired USB. This translates to mechanisms to assure the user that their device is
communicating only with their intended host and vice-versa. All data communications between host and
device are encrypted to ensure privacy.

 Ease of use. This has always been a key design goal for all varieties of USB. Wireless USB is engineered
to continue that tradition, while preserving strong security requirements.

 Investment preservation. There are a large number of PCs that support wired USB in use. There are a
larger number of wired USB peripherals in use. Wireless USB defines a new USB device class, the Wire
Adapter device class, that allows existing PCs to be ‘upgraded’ to include Wireless USB support, and that
same device class allows wired USB devices to have a wireless connection back to the host PC.

 Note: the Wireless USB host and device behavior as specified in this specification may not be backward
compatible to those specified in Wireless USB 1.0. Backward compatibility is discussed in Appendix C,
Backward Compatibility Requirements.

1.3 Objective of the Specification
This document defines a revised industry-standard Wireless USB. The specification describes the protocol
definition, types of transactions, bus management, and the programming interface required to design and build
systems and peripherals that are compliant with this standard. This specification does not describe the
underlying physical and MAC layers. These layers are defined in the PHY and MAC specifications, see [4] and
[3]. This specification was written specifically targeting these sub-layer definitions, and the features of Wireless
USB take specific advantage of the characteristics of the PHY and MAC Layers.

The goal is to enable wireless devices from different vendors to interoperate in an open architecture, while
maintaining and leveraging the existing USB infrastructure (device drivers, software interfaces, etc.). The
specification is intended as an enhancement to the PC architecture, spanning portable, business desktop, and
home environments, as well as simple device-to-device communications. It is intended that the specification
allow system OEMs and peripheral developers adequate room for product versatility and market differentiation
without the burden of carrying obsolete interfaces or losing compatibility.

1.4 Scope of the Document
The specification is primarily targeted to peripheral developers and platform/adapter developers, but provides
valuable information for platform operating system/ BIOS/ device driver, adapter IHVs/ISVs, and system
OEMs. This specification can be used for developing new products and associated software.

 Wireless Universal Serial Bus Specification, Revision 1.1

 15

Product developers using this specification are expected to know and understand wired USB as defined in the
USB 2.0 Specification. Specifically, wireless USB devices must implement device framework commands and
descriptors as defined in the USB 2.0 specification. Product developers may also need to know and understand
aspects of the WiMedia MAC [3] and PHY [4] specifications depending on the type of Wireless USB product
being developed.

1.5 USB Product Compliance
Adopters of the Wireless USB specification have signed the Wireless USB Adopters Agreement, which
provides them access to a reasonable and non-descriminatory (RAND) license from the Promoters and other
Adopters to certain intellectual property contained in products that are compliant with the Wireless USB
specification. Adopters can demonstrate compliance with the specification through the testing program as
defined by the USB Implementers Forum. Products that demonstrate compliance with the specification will be
granted certain rights to use the USB Implementers Forum logos as defined in the logo license.

1.6 Document Organization
Chapters 1 through 3 provide an overview for all readers, while Chapters 4 through 8 contain detailed technical
information defining Wireless USB.

 Peripheral implementers should particularly read Chapters 4 through 7.

 Host Controller implementers should particularly read Chapters 4 through 8.

Four appendices provide additional information:

 Test Vectors

 Example USB Descriptor Sets for wired adaptors

 Backward compatibility requirements

 UWB channel selection.

Readers are also requested to contact operating system vendors for operating system bindings specific to
Wireless USB.

 Wireless Universal Serial Bus Specification, Revision 1.1

 17

Chapter 2
Terms, Conventions and References

2.1 Terms
ACK Positive Acknowledgment, usually in the context of a protocol handshake

packet

ASIE Application Specific Information Element

AES Advanced Encryption Standard – FIPS publication 197

b/s Transmission rate in bits per second

BER Bit Error Rate (really low for wired environments, really high for wireless
environments).

BOS Binary device object store

BP Beacon Period. Physical channel time during which the MAC Layer will
transmit a beacon packet

BPOIE Beacon Period Occupancy Information Element. This is an information
structure defined in reference [3]. It is used in keeping track of members of
a beacon period.

BPST Beacon Period Start Time. The super-frame reference time at which a
MAC Layer compliant device determines is the start of the super-frame.

PER Packet Error Rate (also really low for wired environments, really high for
wireless environments).

CC Connection Context, including CHID,CDID and CK

CCM Counter with CBC-MAC – A mode of operation built on AES

CDID Connection Device ID

CHID Connection Host ID

CK Connection Key

CSMA/CA Carrier Sense Multiple Access with Collision Avoidance.

CTA Channel Time Allocation

CTM Connect to me

CRC Cyclic Redundancy Check

DATA Packet ID value indicating the associated packet is a data packet.

DID Device ID, either CHID or CDID

DN Device Notification

DNonce Used in the definition of the four-way handshake to refer to a nonce
generated by the device

DNTS Device Notification Time Slot

Wireless Universal Serial Bus Specification. Revision 1.1

18

DR Data Receive; usually used in the context of a Wireless USB channel time
slot during which a particular function endpoint is assigned to received
transmissions from the host.

DRD Dual-Role-Device

DRD-Device Dual-Role-Device in its role of a Wireless USB Device

DRD-Host Dual-Role-Device in its role of a Wireless USB Host

DRP Distributed Reservation Protocol (part of the MAC Layer constructs)

DT Data Transmit; usually used in the context of a Wireless USB channel time
slot during which a particular function endpoint is assigned to transmit
data packet(s).

DWA Device Wire Adapter

Endpoint A uniquely addressable portion of a USB device that is the source or sink
of information in a communication flow between the host and device.

EUI-48 48 bit Extended Unique Identifier

FS Full Speed (defined in USB 2.0, reference [1]) as 12 Mb/s.

FSK Fixed Symmetric Key

FFI Fixed Frequency Interleaving

Frame Typical nomenclature for communications protocols is that a frame is a
packet of transmitted information. In Wireless USB the term Packet is
used (see Packet), because in USB Frame is a specific term meaning a 1
millisecond time base for full and low-speed data communications.

GTK Group Temporal Key

HDR Shorthand for Header, usually in context of the Wireless USB application
packet header

HNDSHK Packet ID value indicating the associated packet is a protocol handshake
packet.

HNonce Used in the definition of the four-way handshake to refer to a nonce
generated by the host

HNP Host Negotiation Protocol

HS High Speed (defined in USB 2.0, reference [1] as 480 Mb/s).

HWA Host Wire Adapter; defined in this specification as a USB 2.0 connected
Wireless USB Host Controller.

IAD Interface Association Descriptor (defined in USB 2.0, reference [2]).

IDATA Packet ID value indicating the associated packet is an Isochronous data
packet with a defined data stream format.

IHV Independent Hardware Vendor

ISO Isochronous

ISV Independent Software Vendor

IE Information Element. A unique set of information that is included in its
entirety in a data structure, such as a Beacon or MMC packet.

KCK Key Confirmation Key

 Wireless Universal Serial Bus Specification, Revision 1.1

 19

LLC Logical Link Control

LQI Link Quality Indication

LSB Least Significant Byte

MAC Layer Media Access Control Layer. In this specification, the MAC Layer is
specifically the WiMedia MAC [3].

MAS Media Access Slot; defined in reference [3]

MBOA Multi-Band OFDM Alliance; industry special interest group promoting
UWB physical and MAC layer standardization. Merged with WiMedia
(see below).

MIC Message Integrity Code (part of the MBOA secure packet encapsulation).

MIFS Minimum Inter-frame Spacing. The minimum time between to successive
transmitted packets. For burst-mode transfers, this is the exact required
time between successive packet transmissions.

MMC Micro-scheduled Management Command

MS-CTA Micro-scheduled CTA

MSB Most Significant Byte

MSDU MAC Service Data Unit. Information that is delivered as a unit between
medium access control service access points.

MSTA Micro-scheduled Time slot Allocation.

NAK Negative Acknowledgement; usually in the context of a protocol
handshake packet

Nonce A term used by cryptographers to refer to an item that is used one time,
such as a random number

OFDM Orthogonal Frequency Division Multiplexing

OOB Out-of-band

PC Personal Computer

PCA Prioritized Contention Access

P2P-DRD The DRD has a Point-to-point link with another DRD

PER Packet Error Rate

PictBridge A Direct Printing Protocol for Digital Still Camera with USB device
function.

PID Packet Identifier

Pipe A logical abstraction representing the association between an endpoint on
a device and software on the host.

PLCP Physical Layer Convergence Protocol

PMK Pairwise Master Key

PK Public Key cryptography.

PHY Physical layer. In this specification, the PHY is specifically the MBOA
PHY [4].

PRF Pseudo-Random Function

Wireless Universal Serial Bus Specification. Revision 1.1

20

PTK Pairwise Temporal Key

RAND Reasonable And Non-Discriminatory (usually with regards to licensing
intellectual property)

RC Replay Counter

RCCB Radio Control Command Block

RCEB Radio Control Event Block

RPipe Remote Pipe

RSSI Received Signal Strength Indication

SC Session Context, including CHID, CDID, Session Key and Security Frame
Counter[SFC]

SFC Secure Frame Counter

SFN Secure Frame Number

SIFS Short Interframe Spacing. The maximum allowed TX-to-RX or RX-to-TX
turnaround time.

SK Session Key

SOF Start Of Frame. The first transaction in a USB 2.0 Frame or Micro-frame.

Slotted Aloha A contention media access communications protocol technique for
reducing the chance of collisions by multiple transmitters by dividing the
channel into time slots and stating rules for how individual transmitters
should select the slots for transmissions.

SME Security management entity

SNR Signal to Noise Ratio

SOF Start Of Frame

STALL Handshake code indicating an unrecoverable error on the function
endpoint

Super Frame The periodic time interval used in the MAC Layer [3] to coordinate packet
transmissions between devices.

TDMA Time Division Multiple Access

TF Code Time/Frequency Code

TFI Time Frequency Interleaving

TKID Temporal Key Identifier (part of the MAC Layer [3] secure packet
encapsulation).

TPC Transmit Power Control

Transaction
Group

Refers to the combination of MMC plus allocated protocol time slots
(MSTAs) during which one or more Wireless USB transactions are
conducted.

TrustTimeout A timing threshold, measured from the reception of a successfully
authenticated packet, after which a device or host must force a re-
authentication before resumption of normal “trusted” data
communications.

UDR Unused DRP Response; see reference [3]

 Wireless Universal Serial Bus Specification, Revision 1.1

 21

USB Universal Serial Bus, usually in reference to USB 2.0.

UWB Ultra-wideband , an emerging high data-rate radio standard.

WiMedia Industry special interest group promoting UWB device standardization.

WUSB Wireless USB

WXCTA Wireless USB channel allocation block; X = DNTS, DT, DR

2.2 Conventions:
Figure 2-1 illustrates the convention for figures in Section 5.4 for illustrating the burst data phase protocol
(explained later in this specification).

Figure 2-1. Data Burst Transaction Convention

There may be more than one transaction per illustration/example. For each transaction, there is an initial
condition of what is called the Transmit and Receive windows, illustrated as a number wheel, with shading in
the spoke region indicating the current window. The numbers on the wheel represent the sequence numbers
associated with the window locations. Shading on the outside of the wheel indicates the current distance
between the current extremes of the sequence numbers in the current window (called sequence distance).

Figure 2-2 illustrates the conventions used in for the transaction diagrams in Chapter 5.

Wireless Universal Serial Bus Specification. Revision 1.1

22

Figure 2-2. Transaction Diagram Conventions.

Light/Yellow shading/highlights in tables is used to illustrate standard/required portions
of dynamic structures. If there is no highlighting, then the entire table contents are
required.

If a table has only white and shaded portions, the shaded portion(s) indicate valid
portion and the white indicates invalid portion(s). If there is no shading, then the entire
table contents are valid values.

Invalid Value

Valid Value

 Variable, field names and Device Notifications are italicized.

 Device states are bold.

 Numbers without a base indicator are in decimal. Non-decimal numbers have a base indicator appended to
the value. The base indicators used in this specification are: (H - Hexadecimal and B - Binary). Note that
some examples use a (0x) prefix base indicator for Hexi-decimal values.

2.3 References
[1] Universal Serial Bus Specification (Revision 2.0). April 27, 2000. Universal Serial Bus Implementers
Forum (USBIF). Including all published Errata.

[2] Interface Association Descriptor Engineering Change Notice (Revision 1.0). July 23, 2003. This is an
Engineering Change Notice to Universal Serial Bus Specification (Revision 2.0)

[3] Distributed Medium Access Control (MAC) for Wireless Networks (Revision 1.2). March 4, 2008.
WiMedia Alliance, http://www.wimedia.org/en/ecosystem/specifications.asp. This is also currently defined
as the WiMedia MAC. See also Ecma-368 [7] or ISO/IEC-26907.

[4] Multiband OFDM Physical Layer Specification. (Revision 1.2) February, 2007. WiMedia Alliance,
http://www.wimedia.org/en/ecosystem/specifications.asp. This is also currently known has the WiMedia
PHY specification. See also Ecma-368 [7] or ISO/IEC-26907.

[5] NIST FIPS Pub 197: Advanced Encryption Standard (AES), Federal Information Processing Standards
Publication 197, US Department of Commerce/N.I.S.T., November 16, 2001.

[6] NIST Special Publication 800-38C, Recommendation for Block Cipher Modes of Operation: The CCM
Mode for Authentication and Confidentiality.

[7] Ecma-368, High Rate Ultra Wideband PHY and MAC Standard, December 2008, http://www.ecma-
international.org/publications/standards/Ecma-368.htm

[8] Wireless Host Controller Interface Specification (WHCI) v0.95, Intel Corporation,
http://www.intel.com/technology/comms/wusb/download/whci_r095_interface_spec.pdf

 Wireless Universal Serial Bus Specification, Revision 1.1

 23

Chapter 3 Architectural Overview

This chapter presents an overview of the Wireless USB architecture and key concepts. Wireless USB is a
logical bus that supports data exchange between a host device (typically a PC) and a wide range of
simultaneously accessible peripherals. The attached peripherals share bandwidth through a host-scheduled,
TDMA-based protocol. The bus allows peripherals to be attached, configured, used, and detached while the
host and other peripherals are in operation. Security definitions are provided to assure secure associations
between hosts and devices, and to assure private communication.

Later chapters describe the various components of Wireless USB in greater detail.

3.1 USB System Description
A USB system consists of a host and some number of devices all operating together on the same time base and
the same logical interconnect. A USB system can be described by three definitional areas:

 USB interconnect

 USB devices

 USB host

The USB interconnect is the manner in which USB devices are connected to and communicate with the host.
This includes the following:

 Topology: Connection model between USB devices and the host.

 Data Flow Models: The manner in which data moves in the system over the USB between producers and
consumers.

 USB Schedule: The USB provides a shared interconnect. Access to the interconnect is scheduled in order
to support isochronous data transfers and to eliminate arbitration overhead.

USB devices and the USB host are described in more detail in subsequent sections.

3.1.1 Topology
Wireless USB connects USB devices with the USB host using a ‘hub and spoke’ model. The Wireless USB
host is the ‘hub’ at the center, and each device sits at the end of a ‘spoke’. Each ‘spoke’ is a point-to-point
connection between the host and device. Wireless USB hosts can support up to 127 devices and because
Wireless USB does not have physical ports there is no need, nor any definition provided, for hub devices to
provide port expansion. Figure 3-1 illustrates the topology of Wireless USB.

.

Wireless Universal Serial Bus Specification. Revision 1.1

24

Figure 3-1 Bus Topology

3.1.1.1 USB Host
There is only one host in any USB system. The USB interface to the host computer system is referred to as the
Host Controller. Host controllers are typically connected to PCs through an internal bus such as PCI. The Host
Controller may be implemented in a combination of hardware, firmware, or software.

This specification defines another way that a host controller may be ‘connected’ to a PC. Chapter Error!
Reference source not found. describes a Wire Adapter device class that allows USB host functionality to be
connected to a PC through a USB connection (either wired or wireless).

Wire Adapters that directly connect to the PC using wired USB are known as Host Wire Adapters. Host Wire Wire Adapters that directly connect to the PC using wired USB are known as Host Wire Adapters. Host Wire
Adapters add Wireless USB Host capability to a PC.

Wire Adapters that are Wireless USB devices and hence connect to the PC wirelessly are known as Device
Wire Adapters. Device Wire Adapters typically have USB ‘A’ connectors (ie. they look like wired hubs) and
allow wired USB devices to be connected wirelessly to a host PC.

Note that each Wire Adapter creates a new ‘USB system’, in that there is one host (the wire adapter) talking to
one or more devices using the same time base and interconnect.

Wire Adapters are important enabling devices for Wireless USB. Host Wire Adapters enable existing PCs to
support Wireless USB. Device Wire Adapters allow existing wired USB devices to have a wireless connection
to the host PC.

Additional information concerning hosts may be found in Section 3.10 and in Chapter 4.

3.1.1.2 Wireless USB Devices
Wireless USB devices are one of the following:

 Functions, which provide capabilities to the system, such as a printer, a digital camera, or speakers

 Device Wire Adapter, which provides a connection point for wired USB devices.

Wireless USB devices present a standard USB interface in terms of the following:

 Their comprehension of the Wireless USB protocol

 Their response to standard USB operations, such as configuration and reset

 Wireless Universal Serial Bus Specification, Revision 1.1

 25

 Their standard capability descriptive information

Additional information concerning USB devices may be found in Section 3.9 and Chapter 4.

3.2 Physical Interface

3.2.1 Physical Layer Data Rates
The physical layer of Wireless USB is described in the WiMedia Alliance UWB PHY specification, see
reference [4]. The PHY supports information data rates of 53.3, 80, 106.7, 200, 320, 400 and 480 Mb/s and
multiple channels. The PHY also provides appropriate error detection and correction schemes to provide as
robust a communication channel as possible.

For Wireless USB devices, the support of transmitting and receiving data at rates of 53.3, 106.7, and 200 Mb/s
is mandatory. The support for the remaining data rates of 80, 160, 320, 400 and 480 Mb/s is optional. Wireless
USB Hosts are required to support all data rates for both transmission and reception.

3.2.2 Physical Layer Channel Support
All Wireless USB 1.0 implementations must support PHY channels 9 thru 15 (Band Group 1, TF Codes 1-7)
where permitted by national regulations.

All Wireless USB 1.1 implementations must support Band Group 3 or Band Group 6. Implementations that
support these Band Groups must support all TF Codes for any Band Group supported, where permitted by
national regulations.

All Wireless USB 1.1 Host implementations must support operation in Band Group 1, unless they are embedded
host implementations, where permitted by national regulations. This provides backward compatibility with
Wireless USB 1.0 Devices.

Wireless USB 1.1 Device implementations may support operation in Band Group 1, where permitted by
national regulations. This provides backward compatibility with Wireless USB 1.0 Hosts.

Wireless USB 1.1 implementations which support Band Group 1 must support PHY channels 9 thru 15, where
permitted by national regulations.

3.2.3 Physical Layer Channel Selection
WUSB implementations must choose an initial channel for discovering other devices. After discovery, a
WUSB cluster may move to another channel. The Channel Selection process is described in detail in Appendix
D.

3.3 Power Management
A Wireless USB host may have a power management system that is independent of the USB. The USB System
Software interacts with the host’s power management system to handle system power events such as suspend or
resume. Additionally, USB devices typically implement additional power management features that allow them
to be power managed by system software.

This specification defines mechanisms and protocols that allow hosts and devices to be as power efficient as
possible.

3.4 Bus Protocol
Logically, Wireless USB is a polled, TDMA based protocol, similar to wired USB. The Host Controller
initiates all data transfers. Like wired USB, each transfer logically consists of three ‘packets’: token, data, and
handshake. However, to increase the usage efficiency of the physical layer by eliminating costly transitions
between sending and receiving, hosts combine multiple token information into a single packet. In that packet,
the host indicates the specific time when the appropriate devices should either listen for an OUT data packet, or
transmit an IN data packet or handshake (see Figure 3-2). Details of the WUSB protocol are provided in
chapters 4 and 5.

Wireless Universal Serial Bus Specification. Revision 1.1

26

Token Data Hndsk Token Data Hndsk

Propagation delays
plus Device Turn Time

OUT IN

MMC
T

ok
en

 O
ut

H
D

R

H
nd

sk
 O

ut

Data Out

T
ok

en
 In

Data In

‘C
la

ss
ic

’ U
S

B
 2

T

ra
ns

ac
tio

n
P

ro
to

co
l

W
U

S
B

 T
ra

ns
ac

tio
n

P
ro

to
co

l

MMC

Transaction Group

Host Transmission

Device Transmission

T
ok

en
 In

Data In AcK

H
nd

sk
 O

ut

Figure 3-2. Wired to Wireless Protocol comparison

As in wired USB, the Wireless USB data transfer model between a source or destination on the host and an
endpoint on a device is referred to as a pipe. Wireless USB defines new maximum packet sizes for some
endpoint types to enhance channel efficiency. Similarly, some new flow control mechanisms are defined to
enhance channel efficiency and to allow more power-friendly designs. New mechanisms are defined for
isochronous pipes (see chapter 4) to deal with the lower reliability of the wireless medium.

3.5 Robustness
There are several attributes of wireless USB that contribute to its robustness:

 The physical layer, defined by [4], is designed for reliable communication and robust error detection and
correction.

 Detection of attach and detach and system-level configuration of resources

 Self-recovery in protocol, using timeouts for lost or corrupted packets

 Flow control, buffering and retries ensure isochrony and hardware buffer management

3.5.1 Error Handling
The protocol allows for error handling in hardware or software. Hardware error handling includes reporting and
retry of failed transfers. A Wireless USB Host will try a transmission that encounters errors up to a limited
number of times before informing the client software of the failure. The client software can recover in an
implementation-specific way.

3.6 Security
All hosts and all devices must support Wireless USB security. The security mechanisms ensure that both hosts
and devices are able to authenticate their communication partner (avoiding man-in-the-middle attacks), and that
communications between host and device are private. The security mechanisms are based on AES-128/CCM
encryption, providing integrity checking as well as encryption. Communications between host and device are
encrypted using ‘keys’ that only the authenticated host and authenticated device possess. Security details can
be found in Chapter 6Error! Reference source not found..

3.7 System Configuration
Like wired USB, Wireless USB supports devices attaching to and detaching from the host at any time.
Consequently, system software must accommodate dynamic changes in the physical bus topology.

 Wireless Universal Serial Bus Specification, Revision 1.1

 27

3.7.1 Attachment of Wireless USB Devices
Unlike wired USB, Wireless USB devices ‘attach’ to a host by sending the host a message at a well defined
time. The host and device then authenticate each other using their unique IDs and the appropriate security keys.
Details on device connections can be found in Chapter 4.

After the host and device have been authenticated and authorized, the host assigns a unique USB address to the
device and notifies host software about the attached device.

3.7.2 Connect to me
However cutting the cord changes the way people use their electronic devices, user expects the switch from
wired to wireless USB to be as easy as placing a radio on each end and expect to discover and connect. Wireless
USB must also accommodate "dual-role" devices in situations where it is not clear which device should govern
the connection. As wireless USB host is the master of its devices, “Connect to me” provides the procedure for
wireless USB host to direct wireless USB devices to connect.

3.7.3 Removal of Wireless USB Devices
Devices can be detached explicitly by either the host or device using protocol mechanisms. Device detach also
happens when a host is not able to communicate with a device for an extended period of time.

3.7.4 Bus Enumeration
Bus enumeration is the activity that identifies and assigns unique addresses to devices attached to a logical bus.
Because Wireless USB allows devices to attach to or detach from the logical bus at any time, bus enumeration
is an on-going activity for the USB System Software. Additionally, bus enumeration for Wireless USB also
includes the detection and processing of removals.

3.8 Data Flow Types
Wireless USB supports the same data transfer types and pipe types as wired USB. Basic usage and
characteristics of the transfer types and pipe types are the same as wired USB. Because of the higher error rate
characteristic of wireless communications, Wireless USB protocol defines different mechanisms for performing
isochronous data transfers. These mechanisms include handshakes on data delivery as well as device specific
amounts of buffering to allow devices some measure of control on the overall reliability of the isochronous
pipe.

Bandwidth allocation for Wireless USB is very similar to wired USB.

Details of how the basic transfer types are implemented in Wireless USB can be found in Chapter 4.

3.9 Wireless USB Devices
Just like wired USB, Wireless USB devices are divided into device classes such as human interface, printer,
imaging, or mass storage device. Wireless USB devices are required to carry information for self-
identification and generic configuration. They are also required at all times to display behavior consistent with
defined USB device states.

Notably, hubs are NOT a supported Wireless USB device class. Because Wireless USB hosts can support the
architectural limit of 127 devices, there is no need for hubs. However, a new device class called Wire Adapter
is defined. This device class describes a standard way for a device of one USB type (wired or wireless) to
connect devices of the other type. A USB 2.0 connected Wire Adapter (known as a Host Wire Adapter) acts as
the host for a Wireless USB system and provides a way to upgrade an existing PC to have Wireless USB
capability. A Wireless USB Wire Adapter (known as a Device Wire Adapter) acts as a host for a wired USB
system and allows wired USB devices to be connected wirelessly to a host PC. Figure 3-3 shows an example
PC system including both a Host Wire Adapter and a Device Wire Adapter.

Wireless Universal Serial Bus Specification. Revision 1.1

28

USB2.0

USB2.0

Device Wire Adapter: DWA
Host Wire Adapter: HWA

Figure 3-3. Wire Adapters

3.9.1 Device Characterizations
Like wired USB, all Wireless USB devices are accessed by a USB address that is assigned when the device is
attached and enumerated. Each Wireless USB device additionally supports one or more pipes through which
the host may communicate with the device. All Wireless USB devices must support a specially designated pipe
at endpoint zero to which the USB device’s USB control pipe will be attached. All Wireless USB devices
support a common access mechanism for accessing information through this control pipe.

Associated with the control pipe at endpoint zero is the information required to completely describe the
Wireless USB device. Standard descriptors for Wireless USB devices have been augmented (beyond those
required for USB 2.0) to include the necessary information to support wireless communication. Detailed
information about these descriptors can be found in Chapter 7.

3.9.2 Devices and MAC Layer
Wireless USB devices must also be well-behaved MAC Layer devices, see reference [3]. More information on
the behaviors of these devices can be found in Section 4.3.7 of the Data Flow chapter and Section 7.7.2 of the
Wireless USB Framework chapter.

3.10 Wireless USB Host: Hardware and Software
The Wireless USB host has extended responsibilities beyond those of a wired USB host. The Wireless USB
host must be a responsible MAC Layer device. Chapter 4 describes this behavior.

Many Wireless USB hosts will need mechanisms to share the UWB radio with other applications running on the
host. For instance, on a standard PC the radio will be shared between the Wireless USB application and a
wireless networking application. Rules and mechanisms for radio sharing are beyond the scope of this spec, but
radio sharing is a required feature of Wireless USB hosts.

Wireless USB hosts are also responsible for coexisting with other UWB devices (including other Wireless USB
hosts) in accordance with orderly rules for interference mitigation and bandwidth allocation. Wireless USB
hosts follow policies set forth for these behaviors in the WiMedia MAC specification (see reference Error!
eference source not found.). Wireless USB hosts follow the host reservation policy defined in Section 7.7.1.1.

 Wireless Universal Serial Bus Specification, Revision 1.1

 29

In this specification, requirements for Wireless USB Hosts cover hosts that are implemented as part of standard
PCs (notebooks, desktops, …). Wireless USB Hosts that are not standard PCs (portable devices, embedded
hosts) may choose to implement a subset of the requirements. Defining the requirements for these ‘limited
hosts’ is outside the scope of this specification.

Wireless Universal Serial Bus Specification. Revision 1.1

30

Chapter 4 Data Flow Model

This chapter presents high-level information on how data and information moves across the Wireless USB
‘Link’. The information in this chapter affects all implementers. The information presented is above the
signaling and protocol definition(s) of the system. Consult Chapter 5 for details on the low-level protocol. This
chapter provides framework overview information that is further expanded in Chapter 7. All implementers
should read this chapter so they understand the key concepts of Wireless USB.

4.1 Implementer Viewpoints
Wireless USB is very similar to USB 2.0 in that it provides communication services between a Wireless USB
Host and attached Wireless USB Devices. The Wireless USB communication model view preserves the USB
2.0 layered architecture and basic components of the communication flow (i.e. point-to-point, same transfer
types, etc., See Section 5 in the Universal Serial Bus Specification Revision 2.0).

This chapter describes the differences (from USB 2.0) of how data and control information is communicated
between a Wireless USB Host and its attached Wireless USB Devices. In order to understand Wireless USB
data flow, the following concepts are useful:

 Communications Topology: Section 4.2 reviews the USB communications topology including differences
in the physical topology from USB 2.0.

 Communication Flow Models: Section 4.3 defines the general mechanisms for accomplishing information
exchanges, including data and control information, between a host and devices.

 Data Transfers: Section 4.4 provides an overview of how data transfers work in Wireless USB and
subsequent sections define the operating constraints for each Wireless USB transfer type.

 Device Notifications: Section 4.9 provides an overview of Device Notifications, a feature which allows a
device to asynchronously notify its host of events or status on the device.

 Media Reliability: Section 4.10 summarizes the information and mechanisms available in Wireless USB
that a host might use to manage the reliability of the wireless data flows.

 Isochronous transfer model: Section 4.11 provides a detailed model for how isochronous data streams work
over a Wireless USB channel.

 Connection Process: Section 4.13 outlines the basic connection process and introduces the basic
mechanisms for getting devices connected to hosts.

 Security Mechanisms: Section 4.15 summaries the security features provided by Wireless USB.

 Power Management: Wireless enables mobility and mobility implies battery powered devices. Section 4.16
summarizes the power management model and features provided by Wireless USB.

4.2 Communications Topology
The general communications topology of Wireless USB is identical to that used in USB 2.0 (see Figure 4-1).
The obvious advantage of this is that many existing USB 2.0 functional components (in hosts and devices)
continue to work without modification when the physical layer components supporting USB 2.0 are replaced
with those supporting Wireless USB. The delta change from USB 2.0 to Wireless USB is illustrated to the right-
hand side of Figure 4-1. The Function Layer is (almost) completely the same. The only difference is the
isochronous transfer model has some enhancements to allow functions to react to the increased unreliability of
the “Bus Layer”. The Device Layer includes a small number of framework extensions to support security (see

 Wireless Universal Serial Bus Specification, Revision 1.1

 31

below) and management commands required to manage devices on the wireless media. Finally, the Bus Layer
includes significant changes to provide an efficient, secure communication service over a wireless media.

The copper wire in USB 2.0 provides significant value with regards to security of data communications. The
User knows which host the device is associated with because the device has to be physically plugged into a
receptacle and the wire provides a specific path for data communications flow between a host and devices that
cannot be casually observed by devices not purposely connected. Replacing the physical layer copper with a
radio results in ambiguity about the actual association between devices and hosts, and also exposes data
communication flows to all devices within listening range. In other words, the loss of the wire results in a
significant loss of security which must be replaced by other mechanisms in order for Wireless USB to be a
viable and usable technology.

Wireless USB defines processes which allow a device and host to exchange the information required to
establish a Secure Relationship (see Section 6.2.8). After a secure relationship has been established, the host and
device have the necessary information required to support data encryption for “over the air” communications.
Figure 4-1 illustrates how the standard USB data communications flow topology is extended for Wireless USB
to include the concept of a secure relationship between a host and device and also illustrates that over-the-air
data communications are encrypted. Notice that these new features extend only up to the device layer of the
topology, allowing existing applications and device functions to exist and work without modification.

Figure 4-1. Wireless USB Data Communications Topology

Another side-effect of replacing the copper interconnect with a radio is that all low-level signaling events need
to be provided mechanisms in the data flow topology that achieve equivalent functions. These include
replacements for signaling events such as Connect, Disconnect and Resume.

4.2.1 Physical Topology
Wireless USB Devices are not physically attached to a Wireless USB Host. Devices within radio range of a
host establish a secure relationship with the host before application data communications are allowed. A host
and its associated devices are referred to as a Wireless USB Cluster. A Wireless USB Cluster is comprised of a
Wireless USB Host and all the Wireless USB Devices that it directly manages.

Wireless Universal Serial Bus Specification. Revision 1.1

32

Figure 4-2. Physical Wireless USB Connection Topology

Figure 4-2 illustrates an example physical topology enabled by Wireless USB. The host has a radio range of
about 10 meters. Devices within the host’s range can establish a secure relationship with the host and become
part of the host’s Wireless USB Cluster. All communication flows between the host and devices are point-to-
point which means the physical topology of Wireless USB is a 1:1 match with the defined logical
communications topology familiar to USB architecture. Likewise the client software-to-function relationship
remains unchanged (see Section 5.2 in the Universal Serial Bus Specification, Revision 2.0).

Wireless USB also defines a specific class of device called the Wire Adapter (see Chapter Error! Reference
source not found.) that bridges between a Wireless USB bus and a USB 2.0 bus. The effect on the
communications topology is essentially a cascading of USB busses.

4.3 Wireless USB Communication Flows
Wireless USB retains the familiar concepts and mechanisms and support for Endpoints, Pipes, and Transfer
types, please refer to the USB Specification, Revision 2.0 for details. This section describes additions required
to support Wireless USB. Subsequent sections cover co-existence, host and device requirements and an
overview of the methods employed to manage data communications over a Wireless USB Channel.

A channel is a transmission path between nodes. The wireless physical layer (i.e. PHY) formats radio
transmissions in a frequency range, via encoding and other techniques into a channel (or set of channels)
through which basic bit streams are transmitted and received. A data link layer (on top of the PHY layer)
encodes/decodes bit streams into/out of data packets, furnishes transmission protocol knowledge and
management and handles errors in the physical layer, flow control and frame synchronization. The data link
layer includes the MAC (Media Access Control) and LLC (Logical Link Control) for managing information
over the physical channel. Application layers utilize the low-level channel services provided by the MAC and
PHY.

Wireless USB utilizes the MAC Layer and PHY, which define several access methods for accessing the MAC
Layer channel, including Beacons (for discovery and some distributed control) and Distributed Reservation
Protocol (DRP - for TDMA type data communications). MAC Layer channel time is organized into super-
frames as illustrated in Figure 4-3. Super-frames begin with a Beacon Period (BP) and are 65 milliseconds in
duration. Super-frames are logically segmented into 256 Media Access Slots (MAS – each 256µs). The MASs
at the beginning of a super-frame are allocated for use by the Beacon Period.

 Wireless Universal Serial Bus Specification, Revision 1.1

 33

Figure 4-3. Basic Layout of Channel Time organization for a MAC Layer

Wireless USB defines a Wireless USB Channel which is encapsulated within a set of MAC Layer super frames
via a set of MAC Layer MAS reservations (DRPs). The Wireless USB Channel is a continuous sequence of
linked application-specific control packets, called MMCs (Micro-scheduled Management Commands), which
are transmitted by the host within MAC Layer reservations (see Figure 4-4). MMCs contain host identifying
information, I/O control structures and a time reference to the next MMC in the sequence (i.e. a link). These
links provide a continuous thread of control which can be simply followed by devices that join the Wireless
USB Cluster. This encapsulated channel provides the structure that serves as the transmission path for data
communications between a host and devices in a Wireless USB Cluster.

Figure 4-4. General Model of a Wireless USB Channel

The Wireless USB Channel is an efficient and extensible medium access protocol that provides low latency and
fine grained bandwidth control. The Wireless USB Channel allows a host to rapidly and efficiently change the
amount of channel time allocated to individual function endpoints. The Wireless USB Channel is used for both
cluster broadcast and point-to-point data communications.

When establishing a Wireless USB Channel, the host allocates a Broadcast Cluster ID and uses it as the
Destination DevAddr in describing the MAC Layer channel reservation (DRP IEs) and in the MMCs. These are
the control mechanism for a host to manage the Wireless USB Channel. MMCs are used to broadcast command
and I/O control information to all devices belonging to the Wireless USB cluster. MMCs are also used to
communicate channel time allocations for point-to-point data communications, which are specifically between
the host and individual function endpoints in the cluster. The addressing context for MMCs includes the host
DevAddr and a Broadcast Cluster ID. The Broadcast Cluster ID for the Wireless USB channel is assigned by
the host via a process that is appropriate to ensure the value is tightly coupled with the Wireless USB
application and is unique for the lifetime of the Wireless USB Channel. The lifetime of a Wireless USB channel
spans the time from when a host first starts the channel (i.e. after a boot or re-boot) to the next time the host
needs to boot or reboot. The intent is that a host retains Wireless USB channel parameters across power states,
PHY channel changes, etc. Refer to Section 4.13 for details about how a device identifies a host to connect to.
The addressing context for point-to-point data communications includes the host DevAddr, the device DevAddr
and a Stream Index value. A single stream index value is allocated by the host for each Wireless USB Channel.

A Wireless USB Channel consists of a continuous sequence of MMC transmissions from the host. The linked
stream of MMCs is used primarily to dynamically schedule channel time for data communications between host
applications and Wireless USB Endpoints. An MMC specifies the sequence of micro-scheduled channel time
allocations (MS-CTAs) up to the next MMC within a reservation instance or to the end of a reservation
instance. It may be followed by another MMC without the existence of MS-CTAs between the two MMCs. In
this case, the MMC is only used to convey command and control information. The channel time between two

Wireless Universal Serial Bus Specification. Revision 1.1

34

MMCs may also be idle time, where no MS-CTAs are scheduled. The general layout of the MMC is defined
below with detailed information elements for the MMC defined in Sections 5.2 and 7.5.

The MS-CTAs within a reservation instance can only be used by the devices that are members of the associated
Wireless USB Cluster. The direction of transmission and the use of each MS-CTA is fully declared in each
MMC instance. An MMC can declare an MS-CTA during any channel time following the MMC. Section 5.2
provides detailed requirements for using MMCs to accomplish the Wireless USB protocol via the Wireless USB
channel. Figure 4-5 illustrates an example MMC sequence within an instance of a MAC Layer channel
reservation for Wireless USB.

Figure 4-5. Example Wireless USB Channel Control Sequence within a MAC Layer Reservation

An MMC contains the information elements necessary to identify the Wireless USB Channel, declare any MS-
CTAs, or other information elements that are used for command and control. The general structure of an MMC
packet is defined in Section 7.5 and the exact structure of the information elements contained in an MMC is
defined in Sections 7.5 and 5.2.1. The MMC is a broadcast control packet that is for receipt only by devices
that are members of the Wireless USB cluster. The host must use the Broadcast Cluster ID value in the
DestAddr field of an MMC packet’s MAC header. This technique identifies this packet transmission as a
broadcast targeting all devices in a Wireless USB cluster, and avoids potential confusion at Non-Wireless USB
devices in listening range of the host. The MMC data payload must be encapsulated within a MAC Layer
secure packet; however its data payload is transmitted in plain text, thus using the security encapsulation for
authentication purposes only.

A host is required to implement the MAC Layer protocol, establish and maintain (one or more) Wireless USB
Channels by allocating sequences of MAC Layer MAS reservations (i.e. DRPs). A device is also required to
implement the MAC Layer protocol.

This section reviews a small subset of MAC features that are relevant to Wireless USB. It is not intended to
provide a working knowledge of the MAC Layer and also uses many terms defined in the MAC Layer
standard, please refer to reference [3] for full details. Section 4.3.8 describes the requirements on a host for
establishing and maintaining a Wireless USB Channel, both for data communications within the Wireless USB
Cluster and interactions with other MAC Layer devices. Section 4.3.7 describes the minimum requirements on
a device to accomplish data communication over the Wireless USB Channel. This specification includes all
information required to implement Wireless USB Hosts and Wireless USB Devices; it does not include all
information required for a compliant MAC Layer implementation.

4.3.1 Wireless USB Channel Time
Identical to USB 2.0, a Wireless USB Host maintains a free running timer that effectively defines USB channel
time. USB channel time can be used by isochronous devices and is also utilized by several other features of
Wireless USB. Accuracy of the USB channel time must be 20ppm (matching PHY requirements).

 Wireless Universal Serial Bus Specification, Revision 1.1

 35

Current USB channel time is communicated by the host in MMCs. Each MMC contains a 24-bit timestamp
value that indicates when (in USB channel time) the MMC was transmitted. The timestamp consists of two
parts, a 1/8th millisecond value and a microsecond value. The microsecond counter is 7 bits, and counts from 0
to 124, and then wraps back to zero. The 1/8th millisecond value is 17 bits and wraps to zero after reaching a
value of all 1’s. The 1/8th millisecond value increments when the microsecond value wraps from 124 to 0. The
timestamp indicates the time when the beginning of the MMC packet was transmitted.

Figure 4-6. MMC Time Stamp

There are no requirements on a specific start value when the host first starts a USB Channel. However, once the
timestamps are started they must continue to be provided based on the free-running timer as long as the host is
producing MMCs. USB channel time must not be affected by changes in the host’s beacon start time or any
other event during normal operation.

4.3.2 MMC Transmission Accuracy
The host must ensure that MMC transmissions begin on microsecond boundaries with +/-40 nanosecond
accuracy and that the timestamp value in the MMC accurately reflects the USB channel time. For example – it
would be incorrect for a host to produce an MMC with the current time stamp and then wait 2 microseconds to
send the MMC.

Figure 4-7. MMC Time Stamp Accuracy

Figure 4-7 shows a timescale for the free running timer in a host. The host intends to send an MMC when its
free running timer reaches microsecond X. The host has a small window of 40 nanoseconds before to 40
nanoseconds after microsecond X on its free running timer to start transmission of the MMC. If the MMC
transmission starts earlier or later, the host has not met the accuracy requirement for the time stamp in MMC.

4.3.3 USB Time across Device Wire Adapters
For a device wire adapter USB channel time must be consistent (same rate and same value) across its upstream
bus and its downstream bus. A device wire adapter is required to synchronize its downstream SOF packets with
the USB channel time on its upstream wireless connection. The DWA generated FrameNumber values in SOFs
must match the 1/8th millisecond values in MMC timestamps on the upstream wireless bus.

As an example, consider Figure 4-8 where the top part of the figure illustrates the upstream and downstream
buses on a DWA. Bus A is a Wireless USB bus connecting the Host PC to a Device Wire Adapter (DWA).
Bus B is a USB 2.0 hi-speed connection between the DWA and a hi-speed device. The bottom part of the
figure shows a sequence of time when the USB channel time generated by the host is crossing a millisecond
boundary. The vertical dotted lines in the figure show 1/8th millisecond points of USB channel time. The DWA
is required to make the transmission times of the SOFs on the downstream bus be consistent with the upstream
channel time as illustrated in the figure.

Wireless Universal Serial Bus Specification. Revision 1.1

36

The FrameNumber value of the SOFs on the downstream wired bus must match bits 13:3 of the 1/8th
millisecond value in the timestamp of any MMCs transmitted during a 1/8th millisecond period. Similarly, bits
2:0 of the 1/8th millisecond value in the MMC timestamp must reflect the SOF instance (microframe) on the
downstream bus.

Bus A

Bus B SOF SOF SOF SOF

MMCs during this period have
Timestamp:
Bits13:3 of 1/8th millisecond value = N
Bits 2:0 of 1/8th millisecond value = 7
Microsecond value = microseconds
from start of 1/8th millisecond
boundary

MMCs during this period have
Timestamp:
Bits13:3 of 1/8th millisecond value = N+1
Bits 2:0 of 1/8th millisecond value = 0
Microsecond value = microseconds from
start of 1/8th millisecond boundary

PC
or

HWA
DWA HS

Device
Wireless USB USB 2.0

Bus A Bus B

Bus Timings

Example Topology

FrameNumber = N FrameNumber = N FrameNumber = N+1 FrameNumber = N+1

MMCs during this period have
Timestamp:
Bits13:3 of 1/8th millisecond value = N
Bits 2:0 of 1/8th millisecond value = 6
Microsecond value = microseconds
from start of 1/8th millisecond
boundary

1/8th msec 1/8th msec 1/8th msec 1/8th msec

Figure 4-8. USB time across hierarchical buses

Note, HWAs are not required to synchronize their downstream USB channel time with their upstream USB 2.0
channel time (i.e. SOFs). HWAs must meet all Wireless USB channel time accuracy requirements.

4.3.4 Device and Application Co-existence
The Wireless USB Channel is mapped onto reserved MAC Layer channel time, so the host is required to
satisfy the MAC Layer protocol beaconing requirement. This means hosts must manage two-hop topology in
order to respect declared reservations from other devices that carry reservation declarations (DRP IEs) in their
beacon data structures. DRP IEs are used to reserve MAC Layer channel time for the Wireless USB Channel
and the host must utilize MAC Layer beacons to propagate the Wireless USB reservations to neighbors of the
host and individual devices (see Section 4.3.8). Note that protection of Wireless USB reservations requires that
under most circumstances a host and devices from the Wireless USB Cluster transmit beacons during the
Beacon Period. Figure 4-9 illustrates an example.

Figure 4-9. Example Two-Hop Topology

 Wireless Universal Serial Bus Specification, Revision 1.1

 37

The host (WUSB Host) and device (WUSB Dev) communicate via the Wireless USB Channel. The device has
neighbors Dev A and Dev B which are not neighbors of the host (i.e. are not in range of the host, so therefore
cannot successfully receive the host’s Beacon). Therefore, in order to protect the Wireless USB Channel
reservation, the device needs to transmit a Beacon that includes a DRP IE similar to that of the host. Dev A will
observe the device’s beacon and become aware of the Wireless USB Channel reservation and thus avoid
transmitting during the advertised MAC Layer channel time.

A Wireless USB device must be fully MAC Layer aware. Device implementations must meet the MAC Layer
standards for participating in the MAC Layer channel, including managing beacon period synchronization and
processing neighbor beacons.

Over time, the host will encounter situations when it has too much or too little MAC Layer channel time
reserved for the current Wireless USB Channel communications load. There are two basic forms of over-
budgeting which need to be handled: Short-term and Long-term. The definition of a Short-term over-budget
situation is where the host has no scheduled transfers for the Wireless USB Channel. A short-term over-budget
condition does not cause any modifications to the MAC Layer channel reservations for the Wireless USB
Channel, as declared in the beacon data structures transmitted by devices from the Wireless USB Cluster. A
Long-term over-budget scenario can result in a modification to the MAC Layer channel reservation time as
declared in cluster’s beacons. For example, the host may detect that it has much more MAC Layer channel time
required than the aggregate communication load requires. It can therefore release a portion of its reservation by
reducing the number of reserved MASs declared in its DRP IEs for the Wireless USB Channel.

Whenever a host detects an under-budget scenario, it can either keep the current MAC Layer channel
reservation (and endure the performance (throughput) impact), or it may grow its MAC Layer channel
reservation appropriately in order to provide better service for the duration of the increased Wireless USB
Channel communication load. Modifications to the overall MAC Layer channel reservation are accomplished
via changing the DRP IE information for the Wireless USB Channel in both the host’s and Cluster device’s
Beacons.

4.3.5 Device Endpoints
Wireless USB preserves the device Endpoint as the terminus of a communication flow between a host and a
device. Wireless USB Endpoint characteristics are extended from the wired counterparts, in particular to
support security and efficiency. As with USB 2.0, all Wireless USB devices must implement at least the Default
Control Pipe (Endpoint zero). The Default Control Pipe is a Control pipe as defined in the USB 2.0
specification and is available once a device has completed the initial connection data exchange (see Sections
4.3.8 and 4.3.7).

4.3.6 Wireless USB Information Exchange Methods
The types of information exchanges between a host and its associated devices via the Wireless USB Channel
are characterized by three basic functional buckets: host transmitted control information, asynchronous device
transmitted control information and Wireless USB transaction protocol (between a host and function endpoints).
Wireless USB defines the following methods of information exchange:

 Wireless USB Device Notification Time Slots. Wireless USB allocates specific ‘management’ channel
time (Device Notification Time Slots (DNTSs)) for asynchronous, device initiated communications. This
asynchronous upstream (i.e. Device to Host) communication is used for signaling connect and other events
that are analogous to the wired signaling events that occur in wired USB. It is also used as a general
purpose device-to-host notification mechanism through which devices can transmit asynchronous
command, status and request messages to host. This channel time may only be used for Wireless USB
Device Notification Messages as defined in Sections 5.5.3 and 7.6.

 Broadcast Control Information. All Wireless USB data communications occur within the Wireless USB
Channel using a host-scheduled protocol. A host transmits control packets called Micro-schedule
Management Commands (see Section 7.5 for the definition of MMCs), which contain control information
to devices, including acknowledgements to Device Notifications and general purpose Wireless USB Cluster
management.

Wireless Universal Serial Bus Specification. Revision 1.1

38

 Wireless USB Transactions. Wireless USB data communications between the host and function endpoints
utilize a transaction-based communication protocol similar to the USB 2.0 transaction protocol.

Most packets transmitted between a host and devices in the Wireless USB cluster are encapsulated in MAC
Layer secure packets. The only exceptions to this rule pertain to those data exchanges required to establish
initial association (i.e. before a secure relationship is established).

4.3.7 Device Perspective
A Wireless USB Device must implement all of the required features of the Wireless USB protocol (see Chapter
5Error! Reference source not found.) in order to communicate via a Wireless USB Channel. A device always
uses the Wireless USB Channel and the communication protocol defined in this specification to connect and
communicate within a particular Wireless USB Cluster. Section 4.13 details a device’s requirements to
participate in the Wireless USB Cluster Connection process.

A device must implement the full MAC Layer protocol and know how to manage the MAC Layer channel
including synchronization and maintenance of MAC Layer Beacon periods.

Devices must be able to determine which MAS slots are available for communication with the host. All DRP
reservations seen by the device, including the reservations that comprise the Wireless USB channel reservation,
must be excluded from the devices MAS availability information. Section 7.7 summarizes the value settings for
DRP IEs for the host and cluster members that are beaconing. The device identifies the host’s DRP IE based on
the following keys:

 Reservation Type field is Private

 Stream Index field has the value of the Wireless USB channel’s stream index. This is derived from the
MAC Header Delivery ID field.

 DevAddr field set to the channel’s Broadcast Cluster ID.

The device identifies a cluster member’s DRP IE based on the following keys:

 Reservation Type field is Private

 Stream Index field has the value of the Wireless USB channel’s stream index. This is derived from the
from the MAC Header Delivery ID field.

 DevAddr field set to the host’s DevAddr.

Wireless USB devices shall indicate which host it is connected to or wants to connect to using the Wireless
USB specific Host Connection Information ASIE. Using this IE:

 Wireless USB host can move or expand its reservation so the device can connect to the host.

 Wireless USB host can schedule CTAs based on that device’s availability information.

4.3.7.1 Selecting A Wireless USB Host
Wireless USB devices use information transmitted in a host’s MMCs to select which host to connect to. See
Section 4.13, Connection Process, for details. Devices may have to scan several PHY channels before finding
the appropriate host. Depending on user preferences and device capabilities, a device may choose to
automatically connect to a host, or wait for a user to instruct the device to make a connection (possibly by
pushing a button).

4.3.8 Host Perspective
When a Wireless USB Host becomes active, it must choose a PHY channel in which to operate the Wireless USB
channel.

 Wireless Universal Serial Bus Specification, Revision 1.1

 39

Legacy Wireless USB devices (compliant to Wireless USB 1.0) must support BG1, while support of upper bands is
optional. For Wireless USB devices compliant to Wireless USB 1.1, support of Band Group 1is optional, while
support of upper bands is mandatory.

In order to achieve backward compatibility a Wireless USB host needs to support connection by both types of
devices. This can be achieved by Host, before a connection with a device has been established, periodically
switching between a channel in BG1 and a channel in the upper bands. If the host has started its operation on Band
Group 1, it shall stay on the same Band Group 1 channel for BGDwellingTime (3 seconds), providing an
opportunity to connect for legacy devices and devices which choose to use the Band Group 1. If no device has
connected to the host during this time, the host shall switch to a channel in upper bands. In a similar fashion, it will
stay there for BGDwellingTime (3 seconds), providing an opportunity to connect by devices on upper bands. Figure
4-10 below provides a simple state diagram for such an operation.

Figure 4-10. Host dwelling intermittently on channels of BG1 and Upper Bands, to provide opportunity to
connect by BG1 and Upper Bands devices.

Once a device has been connected to the host, the host stops the intermittent switching between the bands. Thus, if a
host has connected to a device on Band Group 1, a device operating on Upper Bands may not be able any more to
connect to the host, until all devices have been disconnected from the host and it restarts its periodic intermittent
dwelling on Band Group 1 and Upper Bands.

If a host only has stored associations with devices which operate on a single band group, and that host has not been
conditioned to accept new associations, then the host need not switch to operation in the other band group under
control of this state machine.

The following text describes the operation of the host during the intermittent dwelling and the device connect
phases, once a PHY channel has been chosen.

Wireless Universal Serial Bus Specification. Revision 1.1

40

Figure 4-11. Wireless USB Application-specific Host Information Element in Beacon

Figure 4-11 illustrates an example DRP allocation for a Wireless USB Channel. The reservation of MAS slots
for a Wireless USB Channel depends on the application load. To understand how the Wireless USB Channel is
established and maintained, the host functionality can be separated into three logical entities as shown in Figure
4-12 e.g. Host System Management, Wireless USB Host and MAC Layer compliant device which are described
in the following sections.

Figure 4-12. Wireless USB Host logical components

By separating the Wireless USB Host and MAC Layer compliant device roles, it is easier to describe the
establishment and maintenance of the Wireless USB Channel which encapsulates (but is independent) of the
operation of the Wireless USB protocol.

4.3.8.1 MAC Layer Compliant Device
The primary MAC Layer channel management operation is the generation and exchange of Beacon Frames
between MAC Layer compliant devices, which carry the channel use and MAC Layer compliant device
identification information elements. The MAC Layer compliant device implements the MAC Layer rules which
enable the MAC Layer channel to be shared between a set of MAC Layer compliant devices in radio range. It
implements the MAC Layer protocol in particular the generation and interpretation of the MAC Layer beacon
frames which are the principle means by which the Wireless USB Channel permissions are obtained since they
carry the DRP reservation Information Elements. The MAC Layer compliant device will inform Host System
Management of any DRP conflicts which may arise in the operation of the MAC Layer protocol (owing to
mobility or other effects changing the topology of the MAC Layer beacon group, or any traffic change from the
MAC Layer compliant devices in range).

The MAC Layer compliant device implements MAC Layer superframe synchronization where adjustments to
the superframe timing are made for the slowest clock in the neighborhood.

The MAC Layer protocol requires hidden neighbor effects to be mitigated by the exchange of neighbor
information in beacons. The Host Management can utilize features in both the MAC Layer compliant device
and Wireless USB Host in managing the two-hop neighbor topology so that the Wireless USB channel
reservations are appropriately respected by all neighbors of devices in the Wireless USB Cluster.

4.3.8.2 Wireless USB Host
The Wireless USB Host entity implements the host roles of schedule generation and maintenance of the
Wireless USB Channel. It is responsible for scheduling data communications on the Wireless USB Channel

 Wireless Universal Serial Bus Specification, Revision 1.1

 41

between itself and Wireless USB devices belonging to the Wireless USB cluster. The host must ensure that it
does not schedule Wireless USB channel communications (i.e. any part of a transaction group) to cross the
boundary of a permitted MAC Layer channel access period (i.e. DRP reservation). Figure 4-13 illustrates a view
of how the Wireless USB Host operation simplifies this into a series of contiguous (but disjoint in time) time
intervals separated by MMCs.

Figure 4-13. Example Map of Wireless USB Channel to MAC Layer Channel Reservation Boundaries

The logical end of a Transaction Group (as bounded by the mapping onto the MAC Layer Channel in time)
must be managed by the Wireless USB host scheduler so that they do not violate MAC Layer channel time
structures.

4.3.8.3 Host System Management
Host system management controls the interactions and information flow between the Wireless USB Host and
MAC Layer compliant device modules, including providing the mapping of the Wireless USB Channel on the
PHY via the establishment and maintenance of a series of DRP reservations. Many of the possible functions of
this module are beyond the scope of this specification. However it is important to recognize that this module
can utilize the services provided by the host and MAC Layer compliant device modules to accomplish the
behavior required of a Wireless USB Host and the devices in its cluster. It bridges the Wireless USB Host and
MAC Layers such that requirements of each can be converted into structures recognized by the other, for
example it can map MAC Layer time onto Wireless USB channel time so that the host time references used by
the Wireless USB devices won’t violate the reservation boundaries.

The policy decisions on how to manage MAC Layer channel time for the Wireless USB channel are
implemented in a host-specific manner within this module, including how long to hold MAC Layer
reservations, when to expand them, when to reduce and when to release them.

4.3.8.4 Managing Two-Hop Reservation Topology
If all the neighbors of a Wireless USB device are also neighbors of the host, then the host’s beacon is sufficient
to maintain the integrity of the Wireless USB Channel and respect of neighbor’s announced DRP reservations.

Wireless Universal Serial Bus Specification. Revision 1.1

42

H

D

D

D

D

Figure 4-14 Host covers all Wireless USB device

If new MAC Layer compliant devices have entered the radio range of a Wireless USB cluster member device
but are not in the range of the host, a Hidden neighbor situation exists, as illustrated in Figure 4-15 where M is
hidden from H and could interfere with traffic at the D(s) in its range.

Figure 4-15 Hidden Neighbor

If the device is not able to accept the entire Wireless USB channel DRP reservation due to reservation conflicts
with its neighbors, the device should accept part of the Wireless USB channel DRP that doesn’t conflict with its
neighbors’ reservations, As a result, the host knows the device has hidden neighbors. It is up to the host to
decide whether to adjust its DRP reservations to entirely avoid the conflicts.

4.3.8.5 Other Host Considerations
Table 4-1 summarizes how MAC DevAddr values are allocated by a host to manage devices through the process
of admittance to a Wireless USB Cluster (see Section 4.13 for details). It is the responsibility of the host to
avoid DevAddr value conflicts within its Wireless USB Cluster.

 Wireless Universal Serial Bus Specification, Revision 1.1

 43

Table 4-1. Summary of how MAC Layer DevAddr Address Space is used for Wireless USB

Address Tag Range Explanation

MAC Layer Generated, Multicast and
Broadcast DevAddr Range

256-65535
(0100H-FFFFH)

Wireless USB Hosts must have a full
48-bit MAC Address from which a 16-
bit DevAddr is generated. The MAC
Layer also assigns addresses in the
upper portion of this range to Multicast
and Broadcast DevAddrs. Self
Beaconing devices that generate a 16-
bit DevAddr must also have a full 48-
bit MAC Address

UnConnected_Device_Address 255 (00FFH) A Wireless USB device will use this
DevAddr value for its Wireless USB
DevAddr when it is in the
UnConnected device state.

UnAuthenticated_Device_Address_Range 128-254
(0080H-00FEH)

A Wireless USB Host may assign a
connecting device a Device Address
in this range in response to a
DN_Connect notification. It will also
choose an address in this range to
serve as the Broadcast Cluster ID.

WUSB_Device_Address_Range 0-127
(0000H-007FH)

The host will assign a device a Device
Address in this range as part of the
normal enumeration process.

4.4 Data Transfers
Wireless USB preserves all of the basic Data Flow and Transfer concepts defined in USB 2.0, including the
Transfer Types, Pipes and basic data flow model. The differences with USB 2.0 are enumerated below, starting
with description of differences at the protocol level, then the differences in transfer type constraints.

The USB 2.0 specification utilizes a serial transaction model. This essentially means that a host starts and
completes one bus ‘transaction’ {Token, Data, Handshake}, before starting the next transaction. ‘Split’
transactions also adhere to this same model as they are comprised of complete high-speed transactions {Token,
Data, Handshake} that are completed under the same model as all other transactions.

Wireless USB maps the USB 2.0 transaction protocol onto the TDMA Micro-scheduling feature. The result is
that the Wireless USB transaction protocol is essentially a split-transaction protocol that allows more than one
‘bus transaction’ to be active on the bus at the same time. The split-transaction protocol scales well (across
multiple transactions to multiple function endpoints) with signaling bit-rates as it is not completely subject to
propagation delays. The basic USB protocol is recognizable within the Wireless USB split transaction
architecture, however there are modifications to certain aspects of the protocol in order to reduce or hide some
protocol overheads.

Figure 4-16 illustrates the high-level differences between the USB 2.0 “one at a time” transaction protocol and
the basic structure of the Wireless USB protocol.

Wireless Universal Serial Bus Specification. Revision 1.1

44

Figure 4-16. USB 2.0 vs Wireless USB Transaction Footprints

The USB 2.0 protocol completes an entire IN or OUT transaction (Token, Data and Handshake phases) before
continuing to the next bus transaction for the next scheduled function endpoint. The Wireless USB protocol
broadcasts USB Token (equivalents) in the MMC and utilizes TDMA time slots for the Data and Handshake
phases as appropriate for the transfer type and direction of data communication. Utilizing this method, a host
can ‘start’ a group of transactions at the same time (e.g. because the MMC may contain ‘Tokens’ for more than
one Wireless USB transaction). Within the context of the Wireless USB application, the Micro-scheduled
sequence (e.g. MMC plus associated time slots) is called a Transaction Group. A Wireless USB Host
determines how individual transactions are scheduled into individual transaction groups in order to satisfy the
needs (and priorities) of the applications controlling the devices in the Wireless USB Cluster. Figure 4-16
illustrates a transaction group with an OUT followed by an IN compared with the same sequence of transactions
using the USB 2.0 protocol.

The token blocks in the MMC (Figure 4-16) actually contain several important pieces of information, including
Token information (device, endpoint, direction, etc.) and a description of the time slot for the Data or
Handshake phase of the transaction. A host must order the time slots in a transaction group so that all of the
host-to-device data phases (OUTs) are scheduled to run first in the transaction group (directly following the
MMC) then the host will schedule all of the device-to-host time slots. The host must also construct the MMC so
that WXCTAs are in time-slot order.

The bit signaling rates provided by the device PHY implementation are nominally available across all function
endpoints provided by a device implementation. The signaling rate capabilities of a device are reported in the
Wireless USB Device Capabilities descriptor, see Section 7.4.1.1. The host selects the packet bit transfer rate
for data phase data packets based on a number of criteria, including: the channel conditions and transfer type
constraints defined in Sections 4.5, 4.6, 4.7, and 4.8. For host to device transactions, a host must transmit data
phase packets based on the current configured characteristics of the addressed function endpoint. Configured
characteristics in this context are associated with the currently active (configured) device/interface configuration
characteristics. For device to host transactions, (i.e. data phase packet transmissions), the host directs the device
on bit transfer rate, function endpoint payload size and burst size to use per data phase. The host must adhere to
the constraints of the transfer type and advertised capabilities of the function endpoint.

Endpoint maximum packet sizes in this specification indicate ‘application’ data payloads only. They do not
include any of the MAC or PHY Layer components or any of the security encapsulation or Wireless USB
header overhead components. See Section 5 for details.

 Wireless Universal Serial Bus Specification, Revision 1.1

 45

4.4.1 Burst Mode Data Phase
The USB 2.0 protocol allows a maximum of one data packet per USB transaction. Due to the significant packet
delimiter overheads for wireless (long packet preambles, MIFS, SIFS, etc.), Wireless USB includes the
capability to send multiple data packets during a transaction’s data phase (see Figure 4-17). This feature allows
for potentially better efficiency because packet delimiters and inter-packet gaps can be reduced. The general
term for this capability is a Burst Mode Data Phase. All Wireless USB Data Phases use the Burst Mode Data
Phase rules; even if burst size is one (see Section 5.4).

Figure 4-17. Example WUSB Data Phase Data Burst Footprint

“Data Burst” is a generic term for the series of data packets that are transmitted during the data phase of a
Wireless USB transaction (see Figure 4-17). Maximum data burst size is an individual function endpoint
capability which depends on the function endpoint’s current configuration. A host determines a function
endpoint’s maximum data burst size from its Wireless USB Endpoint Companion descriptor (see Section 7.4.4).
The size of each data packet in a data burst must be the configured function endpoint’s maximum packet size or
adjusted maximum packet size (see Section 4.10.2), (except for short-packet situations and isochronous
streams).

The host may dynamically change the burst size on a per-transaction basis (up to the configured maximum burst
size). The detailed description of Wireless USB Data Bursting is provided in Section 5.4.

The host may use any burst size up to the configured maximum burst size. Examples of when a host may use
different burst sizes include (but are not limited to) a fairness policy on the host, retries for an isochronous
stream, etc. When the function endpoint is an OUT, the host can trivially control the burst size (receiver must
always be able to manage a transaction burst size). Note that the host must observe the configured maximum
endpoint sequence range as defined below, regardless of the actual burst size it is using. When the function
endpoint is an IN, the host can limit the burst size for the function endpoint on a per-transaction basis via a field
in the Token block of the MMC (see Section 5.2.1). Note that a host may override the configured burst size by
specifying a value less than the configured maximum burst size of the function endpoint. Also note that the host
may use information in the received packet header indicating how many packets are available at the IN endpoint
for transmission in the next burst.

A device may facilitate the host’s decision on the required burst size for an IN endpoint by using the Pending
Number of Packets field indicated by bmStatus of a packet received in the last burst from the same endpoint.
So, for example, if the host has received X packets in the last burst, and packets received had a Pending Number
of Packets field value, then the host can estimate the next burst size by using the following table:

Wireless Universal Serial Bus Specification. Revision 1.1

46

Number of packets
received in last
burst from an IN
EP

Pending Number
of Packets field
value

Estimated number of packets
available for next burst

X 00 bMaxBurst

X 01 bMaxBurst – X

X 10 bMaxBurst/2 – X

X 11 bMaxBurst/4 – X

Table 4-2. Estimated number of packets available for the next burst

Notes:

a. For calculation of the estimated number of packets available, the host should take the value of
Pending Number of Packets received in the last packet in the burst

b. Specific use of the estimated number of packets available for next burst is implementation-
dependent, and not part of scope of the standard

4.5 Bulk Transfers
The purpose and characteristics of Bulk Transfers is similar to that defined in USB 2.0 (Section 5.8 of the USB
2.0 Specification). Chapter 5 of this specification describes the details of the packets, bus transactions and
transaction sequences used to accomplish Bulk transfers. Bulk transfer type is intended to support devices that
want to communicate relatively large amounts of data at highly variable times where the transfer can use any
available Wireless USB channel bandwidth. A Wireless USB Bulk function endpoint provides the following:

 Access to the Wireless USB channel on a bandwidth available basis

 Guaranteed delivery of data, but no guarantee of bandwidth or latency

Bulk transfers occur only on a bandwidth-available basis. With large amount of channel time and good channel
conditions, bulk transfers may happen relatively quickly; for conditions with little channel time available, bulk
transfers may take a long time.

Wireless USB retains the following characteristics of bulk pipes:

 No data content structure is imposed on communication flow for bulk pipes

 A bulk pipe is a stream pipe, and therefore always has communication flow either into or out of the host for
any pipe instance. If an application requires a bi-directional bulk communication flow, two bulk pipes must
be used (one IN and one OUT).

4.5.1 Bulk Transfer Packet Size and Signaling Rate Constraints
An endpoint for bulk transfers specifies the maximum data packet payload size and burst size that the endpoint
can accept from or transmit to the Wireless USB channel during one transaction. The allowable maximum data
payload sizes for bulk endpoints are packet size values between 512 and 3584 that are integral multiples of 512
(i.e. 512, 1024, 1536, 2048, 2560, 3072 and 3584). The maximum allowable burst size bulk endpoints may
specify is any value in the range 1 to 16.

Note: Device manufacturers must make sure that the reported Maximum Packet Size, is supported by the class
driver that is using the corresponding bulk endpoint.

A host may use any of the device’s reported PHY signaling rates for data packets transmitted during the data
phase of a Wireless USB transaction. For OUT (host to device) transactions to a bulk endpoint, the host may

 Wireless Universal Serial Bus Specification, Revision 1.1

 47

use any supported PHY signaling rate for data packets. For INs (device to host) the host may direct the device
to use any one of the supported PHY signaling rates for data packets transmitted during the data phase.

A host is required to support any Wireless USB bulk endpoint. A host must support all combinations of bulk
packet sizes and bulk burst sizes. No host is required to support larger than maximum packet sizes. The host
ensures that no data payload of any data packet in a transaction burst will be sent to the endpoint that is larger
than the reported maximum packet size, it will not send more data packets than the reported maximum burst
size and it will not use sequence numbers larger than or equal to the reported maximum sequence value of the
endpoint.

As noted in Section 4.10.2 a host may use smaller data payloads per packet than the reported maximum packet
size as a measure to improve PER, when the function endpoint reports that it supports data packet size
adjustments. For function endpoints that do not support the data packet size adjustment, the host must always
use the reported wMaxPacketSize with transactions to the function endpoint. For function endpoints that do
support data packet size adjustment, the host may only use allowed data packet sizes less than or equal to the
reported maximum packet size for the endpoint. For example, a bulk endpoint reports a wMaxPacketSize of
1536 bytes; a host may only use packet sizes in the set {512, 1024, 1536}. An IN transaction token (WDTCTA,
see Section 5.2.1.2) always includes the packet size the function endpoint should use for the data phase data
packets. A host must always specify to use a data packet size supported by the function endpoint; otherwise the
behavior is not defined. The data packet size selected for each bulk transaction is called the ‘active’ packet size.
On OUT transactions, the function bulk endpoint (that supports packet size adjustments) must be prepared for
the host to use any valid ‘active’ packet size in each transaction.

A bulk function endpoint must always transmit data payloads with data fields less than or equal to the
transaction’s active packet size. If the bulk transfer has more information than will fit into the active packet size
for the transaction, all data payloads in the data burst are required to be active packet size except for the last
data payload in the burst, which may contain the remaining data. A bulk transfer may span multiple bus
transactions. The host is allowed to adjust the active packet size (when the device supports it) on every
contiguous burst. See Section 4.10.2 for the definition of a contiguous burst. A bulk transfer is complete when
the endpoint does one of the following:

 Has transferred exactly the amount of data expected

 Transfers a data packet with a last packet flag set to one in its Wireless USB header (see Section 5).

4.5.2 Bulk Transfer Channel Access Constraints
As with USB 2.0 a bulk function endpoint has no way to indicate a desired bus access frequency for a bulk pipe.
Bulk transactions occur on the Wireless USB channel only on a bandwidth available basis; i.e. if there is
Wireless USB channel time that is not being used for other purposes, bulk transactions will be moved. Wireless
USB provides a “good effort” delivery of bulk data between client software and device functions. Moving
control transfers over the channel has priority over moving bulk transactions. When there are bulk transfers
pending for multiple endpoints, the host will provide transaction opportunities to individual endpoints according
to a fair access policy, which is host implementation dependent.

All bulk transfers pending in a system contend for the same available bus time. Because of this, the USB
System Software at its discretion can vary the bus time made available for bulk transfers to a particular
endpoint. An endpoint and its client software cannot assume a specific rate of service for bulk transfers. Bus
time made available to a software client and its endpoint can be changed as other devices are inserted into and
removed from the system or also as bulk transfers are requested for other function endpoints. Client software
cannot assume ordering between bulk and control transfers; i.e., in some situations, bulk transfers can be
delivered ahead of control transfers. The host may determine that the sum of pending bulk transfers could
achieve better throughput by making the Wireless USB channel larger. A host may reserve more MAC Layer
channel time for the Wireless USB channel (i.e. enlarge the Wireless USB channel) for a short period of time in
order to provide better throughput service to the pending bulk transfers. The decision to enlarge the Wireless
USB channel for this purpose is host implementation dependent.

The host can use any burst size between 1 and the reported maximum in transactions with a bulk endpoint to
more effectively utilize the available Wireless USB channel time. For example, there may be more bulk

Wireless Universal Serial Bus Specification. Revision 1.1

48

transfers than channel time available, so a host can employ a policy of using smaller data bursts per transactions
to provide fair service to all pending bulk data streams.

When a bulk endpoint delivers a flow control event (as defined in 5.5.4) the host will remove it from the
actively scheduled endpoints. The device must transmit an Endpoint Ready device notification to the host to
notify it that the associated bulk endpoint has bulk data or bulk buffer space available and is ready to resume
data streaming.

4.5.3 Bulk Transfer Data Sequences
Bulk transactions use the standard burst sequence for reliable data delivery protocol defined in Section 5.4. Bulk
endpoints are initialized to the initial transmit or receive window condition (as defined in Section 5.4) by an
appropriate control transfer (SetConfiguration, SetInterface, ClearEndpointFeature). A host likewise assumes
the initial transmit or receive window state for bulk pipes after it has successfully completed the appropriate
control transfer as mentioned above.

Halt conditions for a Wireless USB bulk pipe have the identical side effects as defined for a USB 2.0 bulk
endpoint. Recovery from halt conditions are also identical to the USB 2.0 specification, see Section 5.8.5 in the
USB 2.0 specification. A bulk pipe halt condition includes a STALL handshake response to a transaction or
exhaustion of the host’s transaction retry policy due to transmission errors (see Section 4.10).

4.6 Interrupt Transfers
The purpose and characteristics of Interrupt Transfers are similar to those defined in USB 2.0 (Section 5.7 of the
USB 2.0 Specification). The Wireless USB interrupt transfer types are intended to support devices that want a
high reliability method to communicate a small amount of data with a bounded over-the-air service interval.
Chapter 5Error! Reference source not found. of this specification describes the details of the packets, bus
transactions and transaction sequences used to accomplish Interrupt transfers. The Wireless USB Interrupt
transfer type nominally provides the following:

 Guaranteed maximum service period.

 Guaranteed retries during the service period if delivery failures occur.

 Up to 5 retries for a Wireless USB interrupt endpoint.

Note: Retries are only guaranteed if the host detects that there was some attempt by the device to send data. If
the device is completely non-responsive the host may postpone further attempts to the next service interval.

 Guaranteed retry of transfer attempts the next service period in the case of multiple transfer failures during
a service interval.

Interrupt transfers are attempted each service interval for an interrupt endpoint. Bandwidth is reserved to
guarantee a transfer attempt and a certain number of retries each service period. Once a transfer is successful,
another transfer attempt is not made until the next service period. The requested service interval for the
endpoint is described in its descriptor. Subsequent sections describe the possible service intervals for Wireless
USB interrupt endpoints.

Wireless USB retains the following characteristics of interrupt pipes:

 No data content structure is imposed on communication flow for interrupt pipes

 An interrupt pipe is a stream pipe, and therefore is always unidirectional.

4.6.1 Low Power Interrupt IN
Wireless USB provides explicit support for function endpoints (devices) that move data infrequently, have a
low latency requirement on the delivery of the data and a keen requirement to significantly save power. In order
to accomplish the low-latency, the host must poll the endpoint for data at the required poll rate (based on the
value of bInterval). To maximize power savings, the error tolerance rules/policies of the host are relaxed so that
the function endpoint is not required to be listening for every IN token. In general, a low power interrupt
function endpoint only needs to respond to IN tokens when it has data to move. All of the general operational

 Wireless Universal Serial Bus Specification, Revision 1.1

 49

characteristics and rules of an interrupt transfer type as described above, apply for a low power interrupt IN.
The exceptions to the general rules and characteristics are described below.

A host will provide up to 3 attempts for a low power interrupt IN function endpoint. A retry may only be
provided by the host if the host detects that there was some attempt by the device to send data. If the host
determines the device was non-responsive, it may postpone further transaction attempts until the next service
interval.

A low power interrupt IN function endpoint must NAK at least every TrustTimeout period or risks being either
STALLED or disconnected by the host (depending on whether the function endpoint is the only ‘active’
endpoint on a device). A host must not use the Keepalive IE with a device where the low power interrupt IN
function endpoint is the only active endpoint on the device.

4.6.2 Interrupt Transfer Packet Size and Signaling Rate Constraints
An endpoint for interrupt transfers specifies the maximum data packet payload size that the endpoint can accept
from or transmit to the Wireless USB channel. The allowable maximum data payload size for interrupt
endpoints is 1024 bytes. The allowable maximum data payload size for low power interrupt endpoints is 64
bytes. The maximum allowable burst size for interrupt endpoints of any type is one. The equivalent of wired
USB high bandwidth interrupt endpoints are not supported by Wireless USB. Wireless USB interrupt endpoints
are only intended for moving small amounts of data with a bounded service interval. The Wireless USB
protocol does not require the interrupt data packets to be maximum size. If an amount of data less than the
maximum packet size is being transferred it does not need to be padded.

Note : Device manufacturers must make sure that the reported Maximum Packet Size, is supported by the class
driver that is using the corresponding interrupt endpoint.

A host may use any of the device’s reported PHY signaling rates for data packets transmitted during the data
phase of a Wireless USB transaction. For OUTs (host to device) transactions to an interrupt endpoint, the host
may use any supported PHY signaling rate for data packets. For interrupt INs (device to host) the host may
direct the device to use any one of the supported PHY signaling rates for data packets transmitted during the
data phase.

A host is required to support any Wireless USB interrupt endpoint. A host must support maximum packet sizes
from 0 to 1024 bytes for a Wireless USB interrupt endpoint. A host must support maximum packet sizes from 0
to 64 bytes for a Wireless USB low power interrupt endpoint. No host is required to support larger maximum
packet sizes.

As noted in Section 4.10.2 a host may use smaller data payloads per packet than the reported maximum packet
size as a measure to improve PER, when the device reports that it supports data packet size adjustments. This is
an optional feature for an interrupt endpoint. For function endpoints that do not support the data packet size
adjustments, the host must always use the reported wMaxPacketSize with transactions to the function endpoint.
For function endpoints that do support data packet size adjustment, the host may only use allowed data packet
sizes less than or equal to the reported maximum packet size for the endpoint. For interrupt endpoints that
support maximum packet size adjustment, any packet size smaller than the reported wMaxPacketSize can be
used. For example, with a wMaxPacketSize of 512 bytes; a host may only use packet sizes between 1 and 512.
An IN transaction token (WDTCTA, see Section 5.2.1.2) always includes the packet size the function endpoint
should use for the data phase data packets. A host must always use a data packet size supported by the function
endpoint; otherwise the behavior is not defined. The data packet size selected for each interrupt transaction is
called the ‘active’ packet size. On OUT transactions, the function interrupt endpoint (that supports packet size
adjustments) must be prepared for the host to use any valid ‘active’ packet size in each transaction.

An interrupt function endpoint must always transmit data payloads with data fields less than or equal to the
transaction’s active packet size. If the interrupt transfer has more information than will fit into the active packet
size for the transaction, all data payloads in the transfer are required to be active packet size except for the last
data payload in the transfer, which may contain the remaining data. An interrupt transfer may span multiple bus
transactions. The host is allowed to adjust the active packet size (when the device supports it) on every
contiguous burst. See Section 4.10.2 for the definition of a contiguous burst.

An interrupt transfer is complete when:

Wireless Universal Serial Bus Specification. Revision 1.1

50

 Exactly the amount of data expected has been transferred

 A data packet is transferred with a last packet flag set to one in its Wireless USB header.

4.6.3 Interrupt Transfer Channel Access Constraints
Periodic endpoints can be allocated at most 80% of the Wireless USB channel time. A Host is allowed to
temporarily use the 20% channel time reserved for Bulk and Control to attempt to prevent periodic stream
failures.

An endpoint for an interrupt pipe specifies its desired service interval bound. An interrupt function endpoint
can specify an interval from 4.096 to 4194.304 milliseconds.1 The interval is reported as an integer value (x)
from 6 to 16 in the bInterval field of an interrupt endpoint descriptor. The service interval is 2x-1 units of 128
microseconds. Table 4-3 shows the requested service interval in milliseconds for each bInterval value. The
shaded values in the table show the intervals that can be achieved in a Wireless USB system. The service
interval encoding is slightly different than the encoding used in the USB 2.0 specification, due to the MAC
layer time base using units of 256 microseconds.

Table 4-3 Interrupt Endpoint Service Intervals

bInterval
Value

Requested Service Interval
(milliseconds)

1 0.128

2 0.256

3 0.512

4 1.024

5 2.048

6 4.096*

7 8.192

8 16.384

9 32.768

10 65.536

11 131.072

12 262.144

13 524.288

14 1048.576

15 2097.152

16 4194.304

The Wireless USB host may access the endpoint at any point during the service interval. The service interval
provided could be smaller than the interval requested. The interrupt endpoint should not assume a fixed spacing
between transaction attempts. The interrupt endpoint can assume only that it will receive a transaction attempt
(and guaranteed retries) within the service interval bound. Note that errors can prevent the successful exchange
of data within the service interval bound.

An interrupt IN function endpoint is required to provide a NAK response if it receives a request and has no data
to send. A low power interrupt IN function endpoint is not required to NAK in this case. If an interrupt OUT
function endpoint receives a transaction and does not have room to store the data it is required to NAK.

1 The Wireless USB channel typically allows a service interval of 4.096 milliseconds to be achieved, but this may
not always be possible depending on the number of other WiMedia devices present on the same channel, and their
use of the remaining channel time

 Wireless Universal Serial Bus Specification, Revision 1.1

 51

4.6.4 Interrupt Transfer Data Sequences
Interrupt transactions use the standard burst sequence for reliable data delivery protocol defined in Section 5.4.
Interrupt endpoints are initialized to the initial transmit or receive window condition as defined in Section 5.4
by an appropriate control transfer (SetConfiguration, SetInterface, ClearEndpointFeature). A host sets the
initial transmit or receive window state for interrupt pipes after it has successfully completed the appropriate
control transfer.

When a periodic interrupt endpoint delivers a flow control event (as defined in 5.5.4) (e.g. NAK), the host must
automatically resume transaction attempts with the function endpoint in the next service interval. Periodic
interrupt function endpoints do not use endpoint ready DNTS notifications. Contrary to this, when a
notification interrupt endpoint delivers a flow control event, the host waits for it so send a DN_EPRdy before
resuming transaction attempt with the function endpoint (see section 5.5.4 for details).

Halt conditions for a Wireless USB interrupt pipe have the identical side effects as defined for a USB 2.0
interrupt endpoint. Recovery from halt conditions are also identical to the USB 2.0 specification, see Section
5.7.5 in the USB 2.0 specification. An interrupt pipe halt condition includes a STALL handshake response to a
transaction or exhaustion of the host’s transaction retry policy due to transmission errors (see Section 4.10).

4.7 Isochronous Transfers
The purpose of Wireless USB Isochronous Transfers are similar to those defined in USB 2.0 (Section 5.6 of the
USB 2.0 Specification). However, the characteristics of Wireless USB Isochronous Transfers are significantly
different from the characteristics of wired USB isochronous endpoints. This section provides a concise
summary of purpose and characteristics of Wireless USB isochronous endpoints. A more detailed discussion of
factors that led to the different characteristics, operation, and design for Wireless USB isochronous endpoints is
contained in Section 4.11. The Wireless USB isochronous transfer type is intended to support streams that want
to perform constant rate, error tolerant, periodic transfers with a bounded service interval. Chapter 5Error!
Reference source not found. of this specification describes the details of the packets, bus transactions and
transaction sequences used to accomplish Isochronous transfers. The Wireless USB Isochronous transfer type
provides the following:

 Guaranteed bandwidth for transaction attempts on the Wireless USB channel with bounded latency.

 Guaranteed average constant data rate through the pipe as long as data is provided to the pipe.

 Note – this guarantee is subject to the reliability of the wireless media. The Wireless USB isochronous
model allows endpoints to operate with reliability similar to wired USB isochronous endpoints under
most conditions.

 Guaranteed retries during the service period if delivery failures occur.

 At least 30% of actual average throughput needs of the stream for potential use for retries see Section
4.11.9.

Note: A minimum of one guaranteed retry per service interval must be provided.

 Additional reliability during short term error bursts by adding delay to the stream. The amount of delay
that can be added is a function of the buffering provided by the isochronous endpoint.

Isochronous transactions are attempted each service interval for an isochronous endpoint. Bandwidth in the
Wireless USB Channel is reserved to guarantee a transaction attempt and a certain number of retries each
service period. All reserved bandwidth is used each service interval until the isochronous endpoint provides a
flow control response indicating that it is unable to send or receive additional data. The requested service
interval for the endpoint is described in its descriptor. The Wireless USB isochronous transfer type is designed
to support sources and destinations that produce and consume data at the same average rate. It is not required
that software using the Wireless USB isochronous transfer type actually be isochronous in nature.

A Wireless USB isochronous pipe is a stream pipe and is always unidirectional. An endpoint description
identifies whether a given isochronous pipe’s communication flow is into or out of the host. If a device requires
bi-directional isochronous communication flows two isochronous pipes must be used, one in each direction.

Wireless Universal Serial Bus Specification. Revision 1.1

52

4.7.1 Isochronous Transfer Packet Size and Signaling Rate Constraints
An endpoint for isochronous transfers specifies the maximum data packet payload size that the endpoint can
receive from or transmit to the Wireless USB channel. The allowable maximum data payload size for an
isochronous endpoint is 3584 bytes. The maximum allowable burst size for isochronous endpoints is 1 to 16. A
Wireless USB isochronous endpoint also reports its desired service interval bound. Together, the maximum
packet size, maximum burst size, and desired service interval specify the average bandwidth needed by the
isochronous endpoint. An isochronous endpoint must not report a greater average bandwidth than it will
actually consume. The host and system software automatically provide additional reservation time for retries
for Wireless USB isochronous endpoints.

Note: Device manufacturers must make sure that the reported Maximum Packet Size, is supported by the class
driver that is using the corresponding isochronous endpoint.

A Wireless USB isochronous endpoint is limited to requesting a bandwidth requirement of no more than 40
Mb/s. An isochronous endpoint with a service interval of 4.096 milliseconds with a bandwidth requirement of
40 Mb/s will move 21475 bytes per service interval. Wireless USB isochronous endpoints have some flexibility
in choosing maximum burst and packet sizes. Table 4-4 shows the requirements for maximum packet size and
maximum burst for isochronous endpoints.

Table 4-4 Maximum Packet Sizes for Isochronous Endpoints

Maximum
Burst
Size

Max Packet
Size

Total Data Payload Per Service
Interval (bytes)

1 1 to 3584 1-3584

2 257 to 3584 513-7168

3 342 to 3584 1025-10752

4 385 to 3584 1537 – 14336

5 410 to 3584 2049 – 17920

6 427 to 3580 2561 – 21475

7 439 to 3068 3073 – 21475

8 449 to 2685 3585 – 21475

9 456 to 2387 4097 – 21475

10 461 to 2148 4609 – 21475

11 466 to 1953 5121 – 21475

12 470 to 1790 5633 – 21475

13 473 to 1652 6145 – 21475

14 476 to 1534 6657 – 21475

15 478 to 1432 7169 – 21475

16 481 to 1343 7681 – 21475

For Example, an endpoint that needs to move 4000 bytes every service interval can choose maximum burst
sizes from 2 to 8. This device may choose to have multiple alternate settings. For low quality links, a burst size
of 8 and max packet size of 500 may provide the best reliability. For high quality links, a burst size of 2 and
max packet size of 2000 will provide the best efficiency.

Wireless USB isochronous endpoints are only intended for moving data at a constant rate with a bounded
service interval. The Wireless USB protocol does not require that individual isochronous data packets to be
maximum size. If an amount of data less than the maximum packet size is being transferred it does not need to
be padded.

All device default interface settings (except for continuously scalable dynamic switching ones) for Wireless
USB isochronous endpoints must not include any isochronous endpoints with non-zero data payload sizes

 Wireless Universal Serial Bus Specification, Revision 1.1

 53

(specified via wMaxPacketSize in the endpoint descriptor). Alternate settings may specify non-zero data
payload sizes for isochronous endpoints. If the isochronous endpoints have a large bandwidth requirement, it is
recommended that additional alternate configurations or interface settings be used to specify a range of data
payload sizes. For example, these settings might correspond to different resolutions of video streams for a
wireless USB camera. Providing alternate settings with different bandwidth requirements increases the chance
the device can be used with other Wireless USB devices present. In addition, wireless isochronous devices are
recommended to support dynamically switching between their alternate settings. There are a variety of events
that may cause sudden changes in the size of the Wireless USB Channel. These events include a variety of
sources of interference and requirements to follow coexistence policies in a crowded channel with other UWB
devices. A device will be able to continue and begin operation under more circumstances if it is capable of
dynamically switching to modes of operation (alternate settings) that require less bandwidth.

USB system software uses the maximum data payload size, maximum burst size, and bus access period reported
by an isochronous endpoint to ensure that there is sufficient bus channel time to accommodate the endpoint with
the current Wireless USB channel. If there is sufficient Wireless USB channel time for the maximum data
payload (which may mean the host may grow the size of the Wireless USB channel by allocating more of the
MAC Layer channel) the configuration is established, if not, the configuration is not established. Determining
if there is sufficient Wireless USB channel time for the isochronous endpoint may depend on which data rate
the endpoint will be able to operate at for data transmissions. Section 4.7.4 describes the admission decision
process for wireless isochronous and interrupt function endpoints. Isochronous endpoints requiring a large
amount of data may only be able to operate when they are close enough to the host to allow higher transmission
data rates. System software must make admission decisions where the endpoint may only receive enough
bandwidth to operate successfully if it can work at a high data rate. In addition, there are coexistence policies
for hosts to fairly interact and interoperate with other UWB devices. Admitting an isochronous endpoint may
take the overall MAC Layer channel usage above a per device limit set by a coexistence policy for channel
reservations. Operating above the limit makes the Wireless USB host susceptible to being forced to relinquish
bandwidth to other UWB devices. A Wireless USB isochronous endpoint reports whether it is able to
dynamically switch to lower bandwidth alternate settings to help system software make admission decisions in
these cases.

A host may use any of the device’s reported PHY signaling rates for data packets transmitted during the data
phase of a Wireless USB transaction. For OUT (host to device) transactions to an isochronous endpoint, the
host may use any supported PHY signaling rate for data packets. For isochronous INs (device to host) the host
may direct the device to use any one of the supported PHY signaling rates for data packets transmitted during
the data phase.

A Wireless USB host is required to support any Wireless USB isochronous function endpoint that meets the
requirements illustrated in Error! Reference source not found..

During configuration, a host will read a device’s configuration. The configuration contains each isochronous
endpoint’s maximum data payload size, max transaction burst size, and maximum sequence count value. The
host ensures that no data payload of any data packet in a transaction will be sent to the endpoint that is larger
than the reported maximum packet size, it will not send more data packets than the reported maximum burst
size and it will not use sequence numbers larger than or equal to the reported maximum sequence value of the
endpoint.

As noted in Section 4.10.2 a host may use smaller data payloads per packet than the reported maximum packet
size as a measure to improve PER, when the device reports that it supports data packet size adjustments. This
feature is not supported for isochronous endpoints in this version of specification. Isochronous endpoints must
not report support for data packet size adjustments. For isochronous endpoints, which do not support the data
packet size adjustments, the host must always use the reported wOverTheAirMaxPacketSize with transactions to
the function endpoint.

4.7.2 Isochronous Transfer Channel Access Constraints
Periodic endpoints can be allocated at most 80% of the Wireless USB channel time. A host is allowed to
temporarily increase this allocation to attempt to prevent stream failures.

Wireless Universal Serial Bus Specification. Revision 1.1

54

An endpoint for an isochronous pipe specifies its desired service interval bound. A Wireless USB isochronous
endpoint can specify an interval from 4.096 to 4194.304 milliseconds.2 The interval is reported as an integer
value (x) from 6 to 16 in the bOverTheAirInterval field of an isochronous endpoint descriptor. The service
interval is 2x-1 units of 128 microseconds. The service interval encoding is slightly different than the encoding
used in the USB 2.0 specification, due to the MAC layer time base using units of 256 microseconds. The
Wireless USB host may access the endpoint at any point during the service interval. In other words, the service
interval provided could be smaller than the interval requested. The isochronous endpoint should not assume a
fixed spacing between transaction attempts. The isochronous device can assume only that it will receive a
transaction attempt (and guaranteed retries) within the service interval bound. Note that errors can prevent the
successful exchange of data within the service interval bound.

An isochronous IN endpoint is required to provide a NAK response if it receives a request and has no data to
send. If an isochronous OUT device receives a transaction and does not have room to store the data it is
required to NAK.

Note: An isochronous OUT endpoint is required to process received data quickly, such that it never NAKs
unless the buffering associated with the endpoint (and its reported wMaxStreamDelay) is nearly full and can not
store the current burst.

4.7.3 Isochronous Transfer Data Sequences
Isochronous transactions use the standard burst sequence for reliable data delivery protocol defined in Section
5.4. The Wireless USB isochronous protocol must use handshaking for error detection and perform retries
because of the potentially unreliable wireless media. Isochronous endpoints are initialized to the initial
transmit or receive window condition as defined in Section 5.4 by an appropriate control transfer
(SetConfiguration, SetInterface, ClearEndpointFeature). A host sets the initial transmit or receive window state
for isochronous pipes with the appropriate control transfer.

When an isochronous endpoint delivers a flow control event (as defined in 5.5.4) (e.g. NAK), the host must
automatically resume transaction attempts with the function endpoint in the next service interval. Isochronous
function endpoints do not use endpoint ready DNTS notifications.

Data may be discarded by the transmitter under the Wireless USB isochronous protocol. Each isochronous data
packet contains an isochronous header that includes a presentation time. Gaps in the presentation time allow the
receiver to detect when data has been discarded and how many packets have been discarded. See Section 4.11
for a more detailed discussion of isochrony and some implementation examples. The host must discard data
that is no longer usable by an isochronous OUT function endpoint. An isochronous IN function endpoint will
be required to discard data if the channel quality has degraded and there is no buffering available (on the
function) to store additional data.

Isochronous endpoints report the buffer size that is associated with the function endpoint. An isochronous IN
endpoint device discards the oldest data in its buffer if this buffer size is exceeded. The host is responsible for
not sending old data to an isochronous OUT endpoint based on presentation time. Section 4.11 provides
examples and more detailed discussions of how buffering is used to add delay and increased short term error
reliability to a wireless USB isochronous stream.

Wired isochronous endpoints never halt because the wired isochronous protocol does not include handshaking
to report a halt condition. Wireless USB isochronous endpoints also must not return a STALL handshake.

4.7.4 Isochronous Endpoint Host System Admission Decisions
Isochronous endpoints in the default interface setting are required to consume no bandwidth by reporting a
maximum packet size of zero. The interface will have one or more alternate settings for isochronous endpoints
(except for continuously scalable dynamic switching ones) that provide additional settings for the isochronous
endpoint. Each alternate setting contains endpoint descriptors that report a maximum transaction burst size, a
maximum packet size and a service interval for the isochronous endpoints in that alternate interface setting.

2 The Wireless USB channel typically allows a service interval of 4.096 milliseconds to be achieved, but this may
not always be possible depending on the number of other WiMedia devices present on the same channel, and their
use of the remaining channel time.

 Wireless Universal Serial Bus Specification, Revision 1.1

 55

These values inform the host how much bandwidth each isochronous endpoint will need reserved in an error
free environment to function when that alternate setting is selected.

When the host receives a request to enable an alternate setting with an isochronous endpoint – it will need to
determine whether it can support the bandwidth required by the alternate setting. Specifying an exact policy for
how hosts make this decision is outside the scope of the Wireless USB base specification. However, this
section provides an informative discussion of some of the factors that may be considered by the host in these
decisions.

A host may use LOOPBACK_DATA_WRITE and LOOPBACK_DATA_READ configuration requests
(described in Sections 0 and 7.3.1.8) to estimate the error rate for the link at one or more data rates and packet
sizes. In the case of an interface with an isochronous OUT endpoint, the host may repeatedly use the Data
Loopback Write request to send packets with the same size as the isochronous OUT endpoint’s maximum
packet size at a data rate the host wants to evaluate. The success rate of these data loopback write requests
(successful acknowledge received) will give the host information to use in deciding whether to enable the
alternate setting with the isochronous OUT endpoint. The host may also use the information to decide to
schedule additional time for retries if it allows the alternate setting to be configured. In the case of an interface
with an isochronous IN endpoint, the host may use a Data Loopback Write request to send a packet with the
isochronous IN endpoint’s maximum packet size. The host may then repeatedly perform Data Loopback Read
requests of the same size at a data rate the host wants to evaluate.

Alternatively, the host may consider link quality information from previous traffic to the device (other
interfaces or the default control endpoint) in making admission decisions, if this information is available.

In crowded environments, the overall amount of bandwidth that a host may keep reserved under contention is
limited by coexistence policies. If a host is required to expand its bandwidth reservation to more bandwidth
than it is allowed to keep under contention, it may consider whether the endpoints in the alternate setting
support dynamic switching. If dynamic switching is supported, the endpoint supports dynamically being
reconfigured to a different bandwidth mode (represented by a different alternate setting).

4.7.5 Isochronous Data Discards
When link conditions degrade for an extended period of time an isochronous transmitter may be required to
discard data. This section describes the discard mechanism for isochronous OUT and isochronous IN function
endpoints and the requirements for the host and function endpoint in each situation. Each isochronous data
packet includes an isochronous specific header that includes a presentation time associated with the packet. The
presentation time is used in making discard decisions and processing data, see the protocol chapter for specific
details on the isochronous header format.

An isochronous IN function endpoint only discards data when it runs out of physical storage. When data must
be discarded, the isochronous IN function endpoint discards the oldest data stored in the buffer. If the
isochronous IN function endpoint has already tried to transmit the discarded data, it attempts to transfer the
oldest available non-discarded packets using the same burst sequence number(s) as the discarded packet(s). The
host must examine presentation times on received packets and place data into buffer locations based on the
presentation time. This behavior ensures that the host will correctly process data that is transmitted out of order
when an isochronous IN function endpoint discards data.

A host only discards data to an isochronous OUT function endpoint if the presentation time for any of the
isochronous segments in the packet is earlier than the current Wireless USB Channel time. A host should
discard the entire packet (all segments) if the presentation time is earlier than the current Wireless USB Channel
time. Behavior of isochronous OUT discards is similar to IN endpoint behavior. When the host discards a
packet to an isochronous OUT function endpoint it reuses the burst sequence number associated with the
discarded packet, by sending the oldest available non-discarded packet using the same burst sequence
number(s) as the discarded packet(s). The device must examine presentation times on the received packets and
place data into buffer locations based on presentation time.

Use of the dynamic switching mechanism for interfaces with multiple isochronous endpoints is beyond the
scope of this specification. It is recommended that isochronous endpoints supporting dynamic switching be
placed in separate interfaces if possible.

Wireless Universal Serial Bus Specification. Revision 1.1

56

4.8 Control Transfers
The purpose and characteristics of Control Transfers are identical to those defined in USB 2.0 (Section 5.5 of
the USB 2.0 Specification). Chapter 5 of this specification describes the details of the packets, bus transactions
and transaction sequences used to accomplish Control transfers. Chapter 9 of the USB 2.0 specification and
Chapter 7 of this specification define the complete set of standard command codes used for devices.

Each device is required to implement the Default Control Pipe as a message pipe. This pipe is intended to be
used for device initialization and logical device management. This pipe is to be used to access device
descriptors and to make requests of the device to manipulate its behavior (at a device-level). Control transfers
must adhere to the same USB data structure definitions described in USB 2.0.

The Wireless USB system will make a “best effort” to support delivery of control transfers between the host and
devices. As with USB 2.0, a function and its client software cannot request specific channel access frequency or
bandwidth for control transfers. System software may restrict the channel access and bandwidth a device may
desire as defined in Section 4.8.1and 4.8.2.

4.8.1 Control Transfer Packet Size and Signaling Rate Constraints
Control endpoints have a fixed maximum control transfer data payload size of 512 bytes and have a maximum
burst size of one (1). These maximums apply to all data transactions during the data stage of the control
transfer. Refer to Section 5.5.2 for information on optimizations beyond the USB 2.0 standard provided in
Wireless USB for the Setup and Status stages of a control transfer.

A Wireless USB device must report a value of 255 (FFH) in the bMaxPacketSize field of its Device Descriptor.
The host must ignore this field in the Device Descriptor for Wireless USB devices and assume a
wMaxPacketSize of 512 (200H) for the Default Control Pipe. A host must always use the PHY base signaling
rate for Wireless USB Standard request transfers on the Default Control Pipe. This is in order to make these
requests as reliable as possible. A host may choose to use other signaling rates for all other control transfers,
based on the same criteria it uses to select signaling rates on other endpoint transfer types (see Section 4.4). The
Default Control Pipe has a maximum sequence value (bMaxSequence) of 2 (i.e. only sequence values in the
range [0-1] are used). Note, the special control requests DATA_LOOPBACK_READ and
DATA_LOOPBACK_WRITE are not required to use the PHY base signaling rate for packets transmitted
during the request’s data phase. These requests may require packet sizes larger than 512 bytes to be used. These
exceptions are described in detail in Section 4.8.4

The requirements for data delivery and completion of device to host and host to device Data stages are generally
not changed between USB 2.0 and Wireless USB (see Section 5.5.3 in the USB 2.0 Specification). A control
pipe may have a variable-length data phase in which the host requests more data than is contained in the actual
data structure. When all of the data is returned to the host, the function must indicate that the Data stage is
ended by returning a packet with the last packet flag set to one. This rule applies regardless of the size of the
last data packet.

4.8.2 Control Transfer Channel Access Constraints
A device has no way to indicate a desired bus access frequency for a control pipe. A host balances the bus
access requirements of all control pipes and pending transactions on those pipes to provide a “best effort”
delivery between client software and functions on the device. This policy is unchanged with regards to USB 2.0.

Wireless USB requires that part of the Wireless USB Channel be reserved to be available for use by control
transfers as follows:

 A control transfer comprises multiple transactions and may therefore span more than one transaction group.
The individual transactions of a control transfer may, or may not be scheduled onto contiguous transaction
groups.

 The transactions of a control transfer may be scheduled co-incident with transactions for other function
endpoints of any defined transfer type.

 Retries are not required to occur in contiguous transaction groups and may be scheduled with equal priority
to all new control and bulk transactions.

 Wireless Universal Serial Bus Specification, Revision 1.1

 57

 Control transfers that are being frequently retried should not be expected to consume an unfair share of
channel time.

 If there are too many pending control transfers for the available channel time, control transfers are selected
to move through the channel as appropriate.

 If there are control and bulk transfers pending for multiple endpoints, control transfers for different
endpoints are selected for service according to a fair access policy that is Host Controller implementation-
dependent.

 When a control endpoint delivers a flow control event (as defined in 5.5.4), the host will remove the
endpoint from the actively scheduled endpoints. The device must transmit an Endpoint Ready device
notification to notify the host that it is ready to resume data streaming on the flow controlled endpoint.

These requirements allow control transfers between a host and devices to regularly move through the Wireless
USB Channel with “best effort”. The basic System Software discretionary behavior defined in USB 2.0 (Section
5.5.4) applies equally to Wireless USB Control Transfers.

4.8.3 Control Transfer Data Sequences
Wireless USB preserves the message format and general stage sequencing of control transfers defined in USB
2.0 (see Section 5.5.5). The Wireless USB protocol defines several optimizations for the Setup and Status stages
of a control transfer, however all of the sequencing requirements for normal and error recovery scenarios
defined in USB 2.0 Section 5.5.5 directly map to the Wireless USB Protocol. The only necessary clarification is
in regards to recovery from a halt condition, because Wireless USB does not utilize a Setup PID.

After a halt condition is encountered or an error is detected by the host, a control endpoint is allowed to recover
by accepting the next Setup stage control as defined in Section 5.5.2; i.e. recovery actions via some other pipe
are not required for control endpoints. For the Default Control Pipe, a device reset may be ultimately required to
clear a halt or error condition if the next Setup control is not accepted.

4.8.4 Data Loopback Commands
Wireless USB requires that all devices support a pair of control loopback requests: Data Loopback Write and
Data Loopback Read. The Data Loopback requests provide a standard method for accomplishing loopback
capability on all devices. This capability is utilized for a variety of purposes, including compliance testing and
link quality estimation. These requests require exceptions to several of the standard rules for control requests.
Detailed requirements for the loopback requests are described in this section.

All devices are required to support the loopback requests in the UnAuthenticated device state and in the
Default and Address device states. Any device that contains one or more isochronous endpoints in any of its
configurations (isochronous device) must also support the loopback commands in the Configured state. Non
isochronous devices are not required to support the request in the configured state. Behavior for a non
isochronous device is not specified if it receives one of the loopback requests in the configured state.

The amount of data that any device must be able to store for the loopback commands is dependent on the
configuration(s) of the device. A device must be able to store a data payload equal in size to the largest
wMaxPacketSize or wOverTheAirPacketSize value from any of the device’s endpoints in any of its
configurations (devMaxPacketSize). The device must be able to store a data packet of devMaxPacketSize or
less, received with a Data Loopback Write request.

Note: The data packet sent in the data stage of a Data Loopback Write can be up to devMaxPacketSize in bytes.
This is an exception to the normal 512 byte limitation imposed by the control endpoint maximum packet size.
The host can not send more than one data packet in the data stage of a Data Loopback Write. Device behavior
if the host includes multiple packets in the data stage is undefined. Loopback requests may use any data rate
supported by the device. The device must support a Data Loopback Write request with any data rate that the
device indicates it supports. The device must perform the data stage of a control loopback read request at the
specified data rate.

Wireless Universal Serial Bus Specification. Revision 1.1

58

After a device receives a Data Loopback Write request it is required to store the data payload. The required
behavior for a device with stored loopback data including how long the data must be stored is described for
each possible case in the list below:

 The device receives another Data Loopback Write request. The device is required to overwrite any
currently stored data with the data from the current Data Loopback Write Request.

 Any control request other than a Data Loopback Read or Data Loopback Write occurs. The device is
not required to continue to store loopback data.

 A Data Loopback Read Request occurs. If the device has stored loopback data it is required to return
that data (up to the requested length) in a single packet in the data stage of the Data Loopback Read
request. If the requested length is longer than the length of the stored data, device behavior is
undefined. The device must use the specified power level and data rate in the data stage of the request.
After a Data Loopback Read request occurs, the device must continue to store the loopback data until
one of the events described in the preceding bulleted items occurs.

4.9 Device Notifications
Device Notifications are a standard method for a device to communicate asynchronous, device and Bus-level
event information to the host. This communication method is a bus-level feature that does not map to the pipe
model defined for the standard transfer types. Device Notifications are always initiated by a device and the flow
of data information is always device to host. Each packet transmitted is called a Device Notification or simply
Notification.

Notifications are message-oriented data communications that have a specific data format structure as defined in
Section 7.6 and a specific media access mechanism as defined in Section 5.2.1.3 which describes Device
Notification Time Slots (DNTS). These data communications do not use Wireless USB data transactions as
defined in Section 5.3 to accomplish data transfers. The maximum allowable data payload for a Device
Notification message is 32 bytes and the messages must always be transmitted at the PHY base signaling rate.

Device Notification time slots are scheduled by the host on an “as-needed” basis. The amount of channel time
scheduled by the host depends on the service intervals of the pending events (flow control, keep alives, etc.) and
implementation specific policies of the host. A host may schedule a maximum of one device notification time
slot per MMC.

4.10 Media Reliability Considerations
Wireless is an unreliable media, as compared to most non-wireless technologies (i.e. copper, optical, etc). There
are many different forms of interference that contribute to unreliability and a commensurate quantity of
interference mitigation techniques. In Wireless USB, interference mitigation is managed by the host of the
Wireless USB Channel which has the bits of information and set of characteristics to control listed below.

Information

Host-centric information The host can maintain statistical information on every device (PER,
etc.), it also has physical information about what its view of the MAC
Layer channel is like (LQI, etc.).

Device-centric information The host can query the device for its view of the MAC Layer channel.
The information returned includes: LQI, etc.

Controls

Transmit Power Control (TPC). Wireless USB offers manipulation of transmit power levels via
transaction level control attributes and device-level management
commands. See Section 4.10.1 for details.

Transmit Bit Rate Control The transmit bit rate can be adjusted on a per-transaction basis.

 Wireless Universal Serial Bus Specification, Revision 1.1

 59

Controls (cont.)

Data payload Size Control The nominal size of the data payload of transmitted packets is
established by the wMaxPacketSize of the function endpoint.

A commonly defined wireless tool for mitigating some forms of
interference is the ability to change the size of data packets, so that they
are statistically less likely to be corrupted during transmission. See
Section 4.10.2 for details. This is an optional feature for devices and
hosts.

Transfer Burst Size A device exports a maximum level of bursting capability, and the host
(depending on transfer type) can choose to utilize the bursting
capability up to the level required for fair and efficient service for the
devices connected to the Wireless USB Channel.

PHY Channel Change A host can choose to move the Wireless USB channel and associated
cluster to an alternative PHY channel. See Section 4.10.4 for details.

Host Schedule Control The host may temporarily use time allotted for asynchronous
(bulk/control) transactions to provide additional retries for streams that
are experiencing significant error rates.

Dynamic Bandwidth
Interface Control

Some interfaces containing isochronous endpoints may support being
dynamically switched to other bandwidth modes. The host may be able
to switch an interface to address a change in available bandwidth.

The following sections provide overview descriptions of the controls that are available to a host controller, the
application of these controls is a host implementation issue and beyond the scope of this specification.

USB 2.0 specifies that a transaction for a non-isochronous endpoint will be attempted at most 3 times before the
associated pipe is put into a Stalled state (isochronous gets one try). Wireless USB provides a host a much
larger number of attempts in order to allow a reasonable number of transaction opportunities over which it can
employ the controls described below to optimize the Wireless USB channel for data communications between
the host and a Function Endpoint. Wireless USB requires a host to try a transaction at least seven (7) times
before stalling a non-isochronous pipe. Retries are applied at the transaction level, not the data packet level. For
example, if any data packet of a burst succeeds (i.e. the data stream advances), then the host’s pipe retry counter
should be reset to zero. Isochronous pipes don’t stall and have specifically defined mechanisms for advancing
the data stream when data cannot make it from source to sink and data expires see Section 4.11. Note that low-
power Interrupt IN endpoints must be managed with a different retry policy. These types of function endpoints
are explicitly allowed to not respond if they do not have data. Therefore, there is no practical maximum retry
count that is applicable. However, it is still necessary to determine whether the function or function endpoint
has failed.

4.10.1 Transmit Power Control
Wireless USB devices report the TPC levels and adjustments they support (see Section 7.4.1.1). A host may set
the TPC level(s) of a device. The power levels for notifications for the device are managed using the device-
level set WUSB data request (see Section 7.3.1 for details). The host can query the current device level transmit
power control settings by issuing a GetStatus() request on the Default Control Pipe for the device-level features.
A host specifies the power level to be used by the device for data and handshake packets transmitted by the
device. Note, the device resets these parameters to their default values (i.e. highest power setting) whenever the
device returns to the UnConnected device state.

The transmit power control settings for the device are only valid for data communications over the associated
Wireless USB channel. For example if a device implementation supports multiple protocols (For example,
Wireless IP and Wireless USB), the transmit power settings only affect data communications for the Wireless
USB Channel. If a device is capable of simultaneous operation on more than one Wireless USB channel, the
transmit power adjustments only apply to the channel in which the adjustment is made.

Wireless Universal Serial Bus Specification. Revision 1.1

60

The host can make power transmit level adjustments to Device Notifications or for individual protocol time
slots at any time. The device is required to activate the change in transmit power for the next packet
transmission from the device (after the new power setting has been received from the host). All devices are
required to support transmit power control. The power control settings allow 8 power levels to be specified. A
device reports the size of the steps between power levels, and number of power levels that are supported for
operation on TFI and FFI channels. This version of the specification requires devices to support a power level
step size of 2 dB and specifies accuracy requirements on supported power levels that allow both baseband and
RF implementations of transmit power level control. There are two parts to the accuracy requirements:

 Absolute allowed ranges for each power level.

 Additional constraints that guarantee monotonically decreasing power levels for each increasing power
control setting.

Table 4-5 shows the nominal power levels with a 2 dB step for each Wireless USB Power Control Setting and
the absolute accuracy requirements for each level. The shaded power levels in the table must be supported by
all devices.

Table 4-5 Nominal Transmit Power Level Values and Accuracy Requirements for Each Level

Power
Control
Setting

TFI Channel Power Level FFI Channel Power Level

Nominal values Accuracy requirement Nominal values Accuracy requirement

0 TFI_BASE TFI_BASE FFI_BASE FFI_BASE

1 TFI_BASE – 2 dB TFI_BASE – (1 to 3) dB FFI_BASE – 2 dB FFI_BASE – (1 to 3) dB

2 TFI_BASE – 4 dB TFI_BASE – (3 to 5) dB FFI_BASE – 4 dB FFI_BASE – (3 to 5) dB

3 TFI_BASE – 6 dB TFI_BASE – (4.8 to 7.2) dB FFI_BASE – 6 dB FFI_BASE – (4.8 to 7.2) dB

4 TFI_BASE – 8 dB TFI_BASE – (6.4 to 9.6) dB FFI_BASE – 8 dB FFI_BASE – (6.4 to 9.6) dB

5 TFI_BASE – 10 dB TFI_BASE – (8 to 12) dB FFI_BASE – 10 dB FFI_BASE – (8 to 12) dB

6 TFI_BASE – 12 dB TFI_BASE – (9.6 to 14.4) dB FFI_BASE – 12 dB FFI_BASE – (9.6 to 14.4) dB

7 TFI_BASE – 14 dB TFI_BASE – (11.2 to 16.8) dB FFI_BASE – 14 dB FFI_BASE – (11.2 to 16.8)
dB

The absolute accuracy requirements allow the power levels to overlap.

As mentioned above, there are requirements to ensure that the absolute power levels decrease when power
control settings are increased. These requirements constrain the amount that the absolute power level can
change for a change of N Power Control Settings. Table 4-6 shows the required range of the power change for
each possible size of change for the Power Control Setting.

Table 4-6 Required Range Of Power Level Change for Changes In Power Control Setting

Change In Power Control Setting Value Required Change In Absolute Power Level

1 1 to 3 dB

2 3 to 5 dB

3 4.8 to 7.2 dB

4 6.4 to 9.6 dB

5 8 to 12 dB

6 9.6 to 14.4 dB

7 11.2 to 16.8 dB

For example, any change of 2 power control setting value must correspond to a power level change of at least 3
dB and no more than 5 dB. Therefore, if the absolute power level for setting 4 was TFI_BASE – 8 dB then the
absolute power levels for settings 2 and 6 would have to be within the ranges TFI_BASE – (3 to 5) dB and
TFI_BASE – (11 to 13) dB respectively.

 Wireless Universal Serial Bus Specification, Revision 1.1

 61

If instead the absolute power level for setting 4 was TFI_BASE – 6.4 dB then the absolute power levels for
settings 2 and 6 would have to be within the ranges TFI_BASE – (3 to 3.4) dB and TFI_BASE – (9.6 to 11.4)
dB respectively. These values may be derived as follows: A change from setting 0 to setting 2 must be at least
3 dB. Therefore setting 2 can not be less than 3 dB below the TFI_BASE (regardless of the value for setting 4).
A change of 6 settings must be at least 9.6 dB. Therefore setting 6 can not be less than 9.6 DB below
TFI_BASE (regardless of the value for setting 4).

4.10.2 Adjustments to Data Phase Packet Payload Sizes
Large data packets are more efficient for moving data except when interference causes the packet error rate to
increase and retries dominate the transaction traffic on the channel. Packets with larger payloads have a
statistical higher probability of encountering an uncorrectable error. Therefore, under certain circumstances,
throughput efficiency can be increased by decreasing the size of transmitted data packets.

A host can adjust the payload sizes of data phase data packets as one method of managing the packet error rate
on data streams. The effective data stream is illustrated in Figure 4-18.

Figure 4-18. Transfer to Transmitted Packet Mapping for USB 2.0 and Wireless USB

USB 2.0 data communications require (for Bulk, Control and Interrupt transfer types) endpoints to always
transmit data payloads with a data field less than or equal to the function endpoint’s declared wMaxPacketSize).
When a transfer request has more data than can fit in one maximum-sized payload, all data payloads are
required to be maximum size except for the last payload, which will contain the remaining data. A transmitter
may complete a transfer by moving exactly the data expected, or more generically, the transmitter may delineate
the data stream by transmitting a short packet (i.e. less than wMaxPacketSize bytes in a data payload). Note that
zero bytes in the data packet payload is still considered a short packet. Short packet semantics must be
preserved for Wireless USB Bulk, Control and Interrupt function endpoints. Figure 4-18 illustrates this behavior
in the top and middle rows, where the top row is a buffer stream (which may be one or more buffers) that
represents a transfer of some application-specific unit of data. The middle row illustrates, the ‘bus’ view of the
data payloads, each of wMaxPacketSize. ‘R’ represents the residual or remaining data which is less than
wMaxPacketSize. The bottom row of Figure 4-18 illustrates the ‘bus’ view of data payloads where, under
control of the host, the payload sizes of data packets in the data stream may be wMaxPacketSize intermixed
with adjusted payload sizes (aMaxPacketSize). The limits about how and when a host is allowed to adjust
payload sizes in a data stream are described below. The mix is controlled and managed by the host’s
implementation policy.

To preserve short packet semantics and support adjustments to data payload sizes less than the reported
wMaxPacketSize, the short packet occurrences in the data stream must always be explicitly marked by the
transmitter (regardless of whether the host or device supports data packet size adjustments). The
bmStatus.Flags.Last Packet Flag field in the Wireless USB data header (see Section 5) is used to mark the last
packet in a transfer. This field must be set by the transmitter on any data packet that would satisfy the ‘short’
packet semantics of a data stream as defined in the USB 2.0 specification. If the last packet of the transfer has a
data payload of maximal packet size (wMaxPacketSize or adjusted wMaxPacketSize), that last packet is also
marked with bmStatus.Flags.Last Packet Flag, and unlike USB 2.0, a zero length packet must not be added.

Wireless Universal Serial Bus Specification. Revision 1.1

62

Note that a transmitter can only set the bmStatus.Flags.Last Packet Flag field in the Wireless USB data header
of a packet in a burst if it is the last packet in that burst.

The allowable adjustments depend on several runtime characteristics of the pipe for which the adjustments are
being made. The rules for making these adjustments are:

 Changes to the data payload size can occur only on transaction boundaries.

 Changes to the data payload size can occur on contiguous-burst boundaries. This means that a host cannot
adjust the burst size if there is out-of-order data packets in the data stream (i.e. burst sequence) that need to
be retried.

An OUT function endpoint must always use the configured wMaxPacketSize as the basis for reporting buffer
availability in the acknowledgement bit vector (bvAckCode, see Section 5) portion of the handshake packet.
When adjusting the data packet payloads, the host must not violate the function endpoints’ declared burst and
buffering capabilities.

4.10.3 Adjustments to Transmit Bit Rate
The host can adjust the transmit bit rate for data packets transmitted during the data phase of a transaction on a
per transaction basis. For OUT (host to device) data phases, the host may change the transmit bit rate as often as
every data packet in the data burst. However, it must not do any adjustments in transfer bit rate that would
violate the Wireless USB channel protocol time slot. For IN (device to host) data phases, the host will allocate a
Wireless USB Channel protocol time slot for the data phase of the transaction based on an expected transmit bit
rate, which is communicated to the device in the PHY_TXRate field of the WDTCTA. The host must use a
PHY_TXRate value that is supported by the device.

4.10.4 Changing PHY Channel
A host establishes and maintains a Wireless USB channel instance within a single PHY channel but can decide
to move the Wireless USB Channel and thus the devices in the Wireless USB Cluster to another PHY channel.
The criteria and process used by a host to decide to change to an alternate PHY channel is beyond the scope of
this specification. This section describes the mechanisms provided for a host to communicate a PHY channel
change to the members of a Wireless USB Cluster. Note that Wireless USB does not provide a generic
mechanism to move a subset (one or more) of cluster members to a different channel. Rather, it describes a
method for moving an entire cluster.

Wireless USB channel time is not synchronized to the underlying MAC Layer timing structure, so the host’s
Wireless USB Channel time is continuous across any PHY channels where the host decides to locate the
Wireless USB Channel. Since the time base is continuous, the host simply needs to notify the cluster members
that MMCs will be available on a different PHY channel soon. The host accomplishes this by including a
Channel Change announcement (see Section 7.5.3) in the MMCs which announces that a PHY channel change
will occur at a specific Wireless USB channel time. The host must continue to obey the MMC transmission
requirements, regardless of the PHY channel where it has located the Wireless USB channel. Figure 4-19
illustrates an example PHY channel change sequence.

 Wireless Universal Serial Bus Specification, Revision 1.1

 63

Figure 4-19. Example Wireless USB Channel Change

The host must announce a PHY channel change in at least three (3) consecutive MMCs before the channel
change event time. The host must specify a channel change event time that occurs after the transmission of the
last MMC in the original PHY channel and at least tBUSTURNINTERSLOTTIME (see Section 5.3) before the next MMC
transmission in the destination PHY channel. If the host schedules protocol time slots between the two MMC
transmissions of different PHY channels, the channel switch time must be after the protocol time slots.

A Wireless USB device must simply move to the specified destination PHY channel at the specified Wireless
USB channel time if it intends to remain a member of the host’s Wireless USB Cluster. If a device does not
change channel with the host, then it will be detected as disconnected using the standard disconnect mechanism.
If a device transitions out of the Sleep state and observes a Channel Change announcement, it should remain in
the Active state until after the channel switch time has elapsed and it has completed a keep-alive notification on
the new PHY channel.

A host may have devices in the Sleep device state when it determines that is moving the Wireless USB cluster
to a different PHY channel. When this is the case, the host may:

 Wait for all Sleeping devices to return to the Active device state before initiating a channel change, or

 Initiate and complete the channel change without waiting for devices in the Sleep state. Devices that miss
the channel change due to being in the Sleep state simple need to locate their host and reconnect if they
want to remain available for future data communications with the host.

The host may be able to accomplish the channel change without perturbing active data streams; however, this is
beyond the scope of this specification.

The host should change to a channel number that is supported by all current Wireless USB Cluster member
devices.

4.10.5 Host Schedule Control
USB 2.0 (High-speed) requires that at least 20% of the available bus time be reserved for asynchronous data
streams. Wireless USB preserves this allocation rule, but it allows a host to temporarily use/intrude on the
asynchronous channel time in order to temporarily resolve reliability problems for periodic streams.

4.10.6 Dynamic Bandwidth Interface Control
Wireless USB defines an optional dynamic switching mechanism for interfaces containing isochronous
endpoints. If an interface supports dynamic switching, the endpoints in the interface must support dynamically
being reconfigured to a different bandwidth mode (represented by a different alternate setting). The process for
performing a dynamic switch is described in detail in this section.. For example, the host may be able to switch
an interface that supports dynamic switching to a lower bandwidth setting in a case where the PHY channel
bandwidth has degraded significantly.

Wireless Universal Serial Bus Specification. Revision 1.1

64

The process for performing a dynamic switch involves two steps. In the first part of the process the host sends a
Set Interface DS (Dynamic Switch) control request to the device with an active interface that supports dynamic
switching. The Set Interface DS request specifies a Wireless USB Channel time (switch time) for the dynamic
switch to take place and an alternate setting that will be used after the switch. It is not possible to specify more
than one switch time for different endpoints in an interface.

At the switch time an isochronous IN endpoint must start generating data in the format corresponding to the
interface specified in the Set Interface DS request. When presentation times are applied, all data with
presentation times after the switch time must use the format corresponding to the new alternate interface setting.
The isochronous IN endpoint does not discard data that is currently buffered when it receives a Set Interface DS
request. It continues to respond to IN requests following the characteristics of the current alternate interface.
The device will be explicitly notified by the host when the host expects data transmitted over the air by the
isochronous IN endpoint to correspond to the new alternate interface settings (maximum packet size, etc). This
notification occurs during the second step in the dynamic switch process, which is described later in this
section.

An isochronous OUT endpoint must handle data according to the appropriate format after the device has
received a Dynamic Switch DS request. When the endpoint function processes data with presentation times
after the specified switch time it must assume the data characteristics correspond to the alternate setting in the
Dynamic Switch DS command. An isochronous OUT endpoint does not discard any data currently buffered
when a Dynamic Switch DS request occurs. The isochronous OUT endpoint continues to process data
according to the current interface settings as long as the presentation times associated with the data are before
the switch time.

Note: There are a variety of implementations that a function endpoint could use to process data with
presentation times before and after the switch time according to different formats. Some implementations may
not rely on direct observation of presentation times.

In the second step of the dynamic switch process the host sends a Set Interface command to the device that
previously received the Set Interface DS command. The Set Interface request must specify the same interface
alternate setting that was specified in the Set Interface DS command (unless the host is selecting a different
alternate setting with a traditional SetInterface() request). After the Set Interface request, over-the-air
communication to and from all endpoints (of all types) in the specified interface must conform to the
characteristics of the new alternate setting. After the Set Interface request is successfully completed the host
will send all data to isochronous OUT endpoints in the switched interface using the over-the-air characteristics
of the endpoint in the new alternate setting. After the Set Interface command the host expects an isochrones IN
endpoint in the switched interface to respond with the over-the-air characteristics of the endpoint in the new
alternate setting

There are several situations that can occur in the Dynamic Switch process. This section describes possible
situations and host and device responsibilities in these cases.

 If a device that supports dynamic switching receives a Set Interface request without receiving a Set
Interface DS request or receives a Set Interface request specifying a different alternate setting than the
last Set Interface DS request it must treat the Set Interface request as it normally would in a situation
that did not involve dynamic switching.

 If a device receives a Set Interface DS request and does not receive a Set Interface request for an
extended period of time it must follow the rules outlined previously in this section. If the buffer for an
isochronous OUT endpoint empties or the buffer for an isochronous IN endpoint starts to overflow the
device may undertake vendor specific error reporting/handling steps at any time. The host must
attempt to prevent this situation from occurring. However, a dynamic switch will typically be an
attempt to avoid problems due to link degradation and these errors may occur.

 A host must not attempt to make a dynamic switch to an interface with larger bandwidth requirements
if it does not already have allocated bandwidth to support the change.

 A host must not attempt to send a Set Interface DS request with a switch time earlier than the current
Wireless USB Channel time.

 Wireless Universal Serial Bus Specification, Revision 1.1

 65

 A host must not send data in the pre-switch format to an isochronous OUT endpoint with presentation
times after the switch time.

 A host must not send data in the post-switch format to an isochronous OUT endpoint with presentation
times before the switch time.

 A host must not make any requests for data from an isochronous IN endpoint that only has data in the
post-switch format buffered before performing the Set Interface step in the switch process.

4.10.7 Continuously Scalable Dynamic Switching Endpoint
A continuously scalable dynamic switching endpoint reports in its endpoint descriptor the maximum packet size
supported in the default interface. The actual packet size and the maximum stream delay are set with an out-of-
band mechanism to the endpoint (e.g. SetIsoEpAttribute request for DWA).

A host controller can use any interval for a continuously scalable endpoint up to the fastest rate it can be
serviced as reported in its endpoint descriptor,, The host controller is responsible for polling the endpoint every
interval.

4.11 Special Considerations for Isochronous Transfers
This section begins with an overview of the key features of wired USB isochrony. It then describes the
challenges with wireless media that prevent this model from being used with Wireless USB. The section
concludes with a high level overview of the Wireless USB isochronous model.

4.11.1 Summary Of Key Features Of USB Wired Isochrony
This section presents a summary of the key features of the wired USB isochronous transfer model. The
Wireless USB approach to isochronous transfers has significant differences from the wired model.

Consider a full speed wired USB device with an isochronous endpoint. When an isochronous stream is started
the device has a contract guaranteeing the opportunity attempt to send or receive the requested amount of data
each service interval. The amount of data to be moved is part of the endpoint descriptor for the isochronous
endpoint. The delivery itself is not guaranteed (wired isochronous traffic does not use handshakes or retries),
however wired USB bit error rates are required to be 10-9 or better. Therefore, the loss of data (when the
requested amount of data is not sent or received in a service interval) is rare. The USB specification does not
make any guarantees on the location of the service it provides to a wired USB isochronous endpoint in the
service interval. The USB host sends Start of Frame (SOF) packets at the beginning of each frame. The SOF
contains a frame index that rolls over every 2048 frames. The host is responsible for sending the SOF packets
at regular 1 millisecond intervals. Figure 4-20 shows the worst case variation of service location for a FS wired
USB device with a service interval of 1 millisecond (1 USB frame).

Figure 4-20. Worst Case Service Interval Jitter for FS Isochronous Endpoint

Wireless Universal Serial Bus Specification. Revision 1.1

66

In this case device A has an isochronous endpoint that has been admitted to the bus. The endpoint is guaranteed
an amount of time on the bus each frame as shown in Figure 4-20. There is no guarantee on the location of the
service opportunity. The service interval could approach 2 frames or be as small as the duration of the SOF,
reservation and associated guard band. These extremes could happen in successive frames as shown in Figure
4-20. In typical operation the service attempts are evenly spaced as shown in Figure 4-20.

Figure 4-20. Typical Service Interval for FS Isochronous Endpoint

The basic operation of a HS wired USB isochronous endpoint is very similar to the FS case. The frame size
changes to 125 microseconds. These divisions are known as microframes. There is still an indexed SOF packet
sent by the host at the beginning of each microframe. Figure 4-21 shows the typical and worst case service gaps
for a HS isochronous device with a service interval of 1 microframe.

Figure 4-21. Typical and Worst Case Service Intervals For HS Isochronous Endpoint

The typical gap between the start of service opportunities for the device will be 125 microseconds. However,
the service can occur at any point in the service interval.

In wired USB the indexed frames (or microframes) provide a bus clock. Isochronous streams can be specified to
start in specific frames (microframes). Typically, data that is produced in frame (microframe) X-1 by a wired
isochronous IN device is sent across the bus in frame X. A typical wired USB isochronous endpoint needs only
two frames (microframes) of buffering.

4.11.1.1 Wireless Service Intervals
As with wired USB, Wireless USB isochronous endpoints can receive service anywhere in the service interval.
Furthermore, if a Wireless USB isochronous endpoint requires multiple packets per service interval (a
maximum burst size bigger than one) the packet transmit/receive opportunities may be distributed as bursts
from size 1 to the maximum bust size in any fashion throughout the service interval.

 Wireless Universal Serial Bus Specification, Revision 1.1

 67

4.11.2 UWB Media Characteristics

4.11.2.1 Superframe Layout
The Wireless USB isochronous model is designed to work with a specific worst case superframe layout. The
model does not assume that the Wireless USB host can reserve all of the time in the superframe. This section
defines some terminology that divides the superframe into smaller structures. A superframe is shown Figure
4-22 divided into 16 regions called sections.

The sections are numbered from 0 to 15 from left to right in the superframe. Each section contains 16 MAS
time slots of 256 microseconds each.

One section is reserved for transmitting beacons. This section is shown in Figure 4-22.

Figure 4-22. Beacon Reservation In MAC Layer Superframe

A Wireless USB device will not get service during the reserved beacon period. It also will not be able to get
service during times when other Wireless USB devices have reservations. If the Wireless USB host is sharing
the channel with other UWB devices (other Wireless USB hosts or non-USB UWB devices) there will be
additional times when a Wireless USB isochronous device can not receive service. An isochronous device must
account for service gaps to provide functionality in a variety of PHY channel conditions.

4.11.2.2 Worst Case Superframe Layout – Service Interval Bounds.
In some cases, the Wireless USB host will need to share the channel with other UWB devices that have already
established their reservations. If there are no policies on the way UWB devices take reservations, the largest
service interval bound approaches the size of the superframe. Figure 4-23 shows a situation where the service
interval approaches the superframe size:

Wireless Universal Serial Bus Specification. Revision 1.1

68

Figure 4-23. Large Wireless USB Host Service Interval Gap

Under coexistence policies, a device that is admitted by the host can expect to receive service with a worst case
service interval of 8.192 milliseconds. The worst case service interval occurs between the section at the end of
one superframe and the section after the beacon period in the next superframe. Figure 4-24 shows a typical
allocation for a Wireless USB host:

Figure 4-24. Typical Reservation for Wireless USB Host

In Figure 4-24 the Wireless USB host has reserved roughly half of time available for reservations in the
superframe. The largest gap between Wireless USB host time slots occurs between the reservations before and
after the beacon period. The gap is 6.144 milliseconds. The gaps between the other Wireless USB host time
slots are 2.048 milliseconds. In cases where the Wireless USB host reserves a smaller percentage of the
superframe the largest gap approaches 8.192 milliseconds for the time slots before and after the beacon. The
largest gap between other Wireless USB host time slots (not across the beacon reservation) approaches 4.096
milliseconds.

4.11.2.3 Wireless Packet Error Rates
Error rates for wireless USB transfers can be much higher than wired USB error rates. Typical wireless average
bit error rates can be as high as 10-4 with short term spikes to much higher error rates. For 1000 byte packets,
this translate into an average packet error rate (PER) of 10%.

Wired USB bit error rates are required to be 10-9 or better. The wired USB protocol can ignore the possibility of
errors (no handshaking to indicate if data was successfully received in the wired USB isochronous protocol) and
still provide PER of 10-6 or better for 1000 byte packets. If the wireless USB isochronous protocol were to
continue to not use handshaking, it would have to send each packet on the order of 6 times to guarantee

matching wired reliability. From an efficiency standpoint for the wireless USB bus, this approach is not
feasible. Therefore, the wireless USB isochronous protocol uses handshaking.

 Wireless Universal Serial Bus Specification, Revision 1.1

 69

4.11.3 Wireless USB Isochronous Transfer Level Protocol
At the transaction level, the wireless USB isochronous protocol is almost identical to the wireless USB bulk
protocol. The protocol is defined in the protocol chapter. Wireless USB defines mechanisms for isochronous
function endpoints to allow error reporting when data is discarded and to allow backwards compatibility with
some existing class drivers and applications that support wired USB isochronous endpoints.

4.11.4 Wireless USB Isochronous IN Example
This section walks through a simple high level example to illustrate the basic steps that occur in the operation of
a wireless USB isochronous IN endpoint. When a device with an isochronous IN endpoint exchanges
configuration information with the wireless USB host, it reports the amount of buffering that it has for use with
each isochronous IN endpoint. The buffering amount is reported in the wMaxStreamDelay field in the Endpoint
Companion descriptor, see Section 7.4.4. As shown in Figure 4-25, the host must set aside a larger amount of
buffering for working with the endpoint. The buffer set aside by the host must be at least one max packet size
larger than the buffer reported by the device for the isochronous IN endpoint. Note: Wireless USB Host refers
generically to the system containing the wireless USB host controller.

Figure 4-25. Configuring Wireless USB Isochronous IN Endpoint

The isochronous IN endpoint in this example produces an average of 30 1024 byte packets every 65.536
milliseconds. The device contains enough buffering to store 8 of these packets. The endpoint descriptor
requests a service interval of 4.096 milliseconds, a maximum packet size of 1024 bytes, a maximum burst size
of 2, and a maximum stream delay of 16.384 milliseconds. Note that a 4.096 millisecond service interval
provides service only 15 times every 65.536 milliseconds due to the reserved period for beacons.

Figure 4-26. Isochronous IN Endpoint and Host Buffering

Figure 4-26 shows the size of the isochronous IN endpoint and corresponding host buffers. The buffer positions
are indexed for reference throughout the example. The example isochronous IN endpoint produces data
continuously when powered.

When the device buffer fills the oldest data in the buffer is thrown away to make room for the new data. When
the first request for data from the wireless host occurs, the endpoint buffer is full.

Wireless Universal Serial Bus Specification. Revision 1.1

70

Figure 4-27. Initial Data Request From Isochronous IN Endpoint

Figure 4-27 shows the initial request for data. When the first request for data comes from the host, the device
responds with data from its buffer. There are several ways that the isochronous endpoint could handle the
initial response for data. In Figure 4-28, the isochronous IN endpoint sends the oldest data in its buffer in
response to the first request for data when the stream starts.

Figure 4-28. Isochronous IN Endpoint Sends Oldest Data In Buffer In Response To Initial Request

Responding with the oldest data in the buffer leaves the function endpoint susceptible to errors early in the
stream. If the initial packet is successfully transferred – but several errors occur shortly thereafter, the function
endpoint may have to throw away data. An alternate approach is shown in Figure 4-30.

Figure 4-30. Isochronous IN Endpoint Sends Newest Data In Response To First Request And Clears
Buffers

In this case the function endpoint sends the newest data in its buffer in response to the first request and then
discards all other data. Subsequent data is stored normally. The function endpoint may now buffer up to 8
packets before discarding data – even during the initial startup of the stream.

 Wireless Universal Serial Bus Specification, Revision 1.1

 71

Note: There are a variety of options for when an isochronous IN endpoint starts storing data in its buffer and
how it responds to the first isochronous IN request. A device designer should keep in mind that some options
will provide better error tolerance as the stream starts than others.

The host will continue to request data. In this implementation, when the host has received enough data to fill its
initial buffer – the application will begin to consume data. Figure 4-29 shows the state of the system when data
consumption begins.

Figure 4-29. Data Consumption Begins

The host buffer fills and the oldest data in the buffer is sent to the application. Each data packet sent by the
isochronous IN device contains header information that indicates the Wireless USB Channel time when the data
was produced. These presentation times are used by the host to apply the data to specific locations in
application buffers.

Unless there have been significant errors during the start up of the stream, the device buffer will be close to
empty. A delay of approximately 16 milliseconds has been added to the system by the buffering and stream
startup conditions. This delay provides tolerance to short term errors and glitches in the stream as operation
continues. If the device had desired greater tolerance to short term error bursts and glitches it could use
additional buffering. The amount of buffering to use is a device decision. Deciding on the amount of buffering
is a tradeoff between cost, error tolerance, and the amount of acceptable delay/latency in the stream. The
tradeoff is discussed in more detail in Section 4.11.6.

During normal operation the isochronous IN endpoint buffer will stay relatively empty and the host buffer will
stay relatively full. If there is a prolonged period where the error rate is high the endpoint buffer will begin to
fill and the host buffer will begin to empty. As long as the error rate decreases again before the endpoint buffer
overflows, the system will recover because the host allocates guaranteed time for retries each service interval as
part of the bandwidth reservation for the endpoint. However, if the errors continue the endpoint buffer will
eventually overflow and the host will be unable to provide data to the application.

Figure 4-30. Data Must Be Discarded By Isochronous IN Function Endpoint

Figure 4-30 shows the case where the error rate has been significant for a prolonged period. The endpoint
produces its next data packet but has no place to store it. At this point the isochronous IN endpoint must discard
its oldest data to store the new data. This is the only case where data is discarded with an isochronous IN
stream. The device will continue to try to send data until it is forced to discard data when its buffer overflows.

Wireless Universal Serial Bus Specification. Revision 1.1

72

Section 4.11.9 examines error handling in more detail. When an isochronous IN endpoint discards data it must
re-use the burst sequence number associated with the discarded packet. The host processes data packets based
on their presentation times and will still place data in the correct locations in application buffers. There are
methods for communicating the amount of information that has been discarded and options for attempting to
prevent a buffer overflow from occurring.

4.11.5 Wireless USB Isochronous OUT Example
This section walks through a simple high level example to illustrate the basic steps that occur in the operation of
a wireless USB isochronous OUT endpoint. The wireless USB isochronous OUT example is similar to the
isochronous IN example in reverse. When a device with an isochronous OUT endpoint exchanges
configuration information with the wireless USB host, it reports the amount of buffering that it has for use with
each isochronous OUT endpoint. The buffering amount is reported in the wMaxStreamDelay field in the
endpoint companion descriptor described in 7.4.4.

Figure 4-31. Configuring Wireless USB Isochronous OUT Endpoint

The isochronous OUT endpoint in this example produces an average of 30 1024 byte packets every 65.536
milliseconds. The device contains enough buffering to store 8 of these packets. The endpoint descriptor
reports a maximum packet size of 1024, a maximum burst size of 2, a service interval of 4.096 milliseconds,
and a wMaxStreamDelay of 16.384 milliseconds.

Error! Reference source not found. shows the size of the isochronous OUT endpoint. The buffer positions
are indexed for reference throughout the example. The host buffering must be able to store enough data for the
isochronous OUT stream that the host will only discard data when it is no longer usable by the device. The rest
of this example describes exactly when the host will discard data. Both buffers are empty before the stream
starts. When the Wireless USB host first receives data for the stream it attempts to send it to the isochronous
OUT endpoint.

Figure 4-32. Initial Data Sent To Isochronous OUT Function Endpoint

Figure 4-32 shows the initial data as it is received by the host and sent to the Wireless USB isochronous OUT
endpoint. The wireless USB host will continue to send data as it receives data from the application. Each data
packet sent to the isochronous OUT function endpoint contains header information that indicates the Wireless
USB Channel time when the data is intended for consumption. These presentation times can be used by the
device to place data in the proper buffer locations and determine when data should be consumed by the function
endpoint. When the isochronous OUT function endpoint has data with the current presentation time it will
consume the data. The endpoint function must examine the presentation time in the packet with the first
sequence number when the stream starts. The endpoint function begins consuming data when the Wireless

 Wireless Universal Serial Bus Specification, Revision 1.1

 73

USB channel time reaches the presentation time of the initial data. The host must attempt to apply initial
presentation times and schedule the stream start up such that the isochronous OUT function endpoint buffering
will be full when it begins to consume data based on the initial presentation time. This allows the isochronous
output buffering to provide the maximum delay and short term error tolerance for the stream. Figure 4-33
shows the state of the system when data consumption by the function on the isochronous OUT function
endpoint begins.

Figure 4-33. Data Consumption Starts For Isochronous OUT Function Endpoint

When the stream starts the host starts sending the first packet to the isochronous OUT function endpoint at
Wireless USB channel time zero. The packet is marked with the presentation time 16 milliseconds
(presentation times are rounded to even milliseconds for simplicity in the example). The isochronous OUT
function endpoint buffer fills. When the Wireless USB channel time reaches 16 milliseconds the endpoint
function begins to consume data starting with the first packet received with presentation time 16. Unless there
have been significant errors during the start up of the stream, the isochronous OUT function endpoint buffer
will be full when it begins consuming data. A delay of approximately 16 milliseconds has been added to the
system by the buffering and stream startup conditions. This delay provides tolerance to short term errors and
glitches in the stream as operation continues. If the isochronous OUT function endpoint had desired greater
tolerance to short term error bursts and glitches it could have used additional buffering. The amount of
buffering to use is a device designer’s decision. It is a tradeoff between cost, error tolerance, and the amount of
acceptable delay/latency in the stream. The tradeoff is discussed in more detail in section 4.11.6.

During normal operation the isochronous OUT endpoint buffer will stay relatively full. If there is a prolonged
period where the error rate is high the presentation time for the oldest un-transmitted data on the host will get
closer to the current Wireless USB channel time and the isochronous OUT endpoint buffer will begin to empty.
As long as the error rate decreases again before the isochronous OUT endpoint buffer underflows, the system
will recover. However, if the errors continue the device buffer will eventually underflow. When errors occur
the isochronous OUT endpoint will not have data to consume and the host will discard data if it has not been
able to transmit the data and the Wireless USB channel time reaches the presentation time for the data.

Figure 4-34. Buffer Overflows and Host Must Discard Data For Isochronous OUT Function Endpoint

Figure 4-34 shows the case where the error rate has been significant for a prolonged period. The Wireless USB
channel time reaches 48 milliseconds and the host must discard the packet with a 48 millisecond presentation
time. At this point the host must discard data. The host only discards data when the data is late based on its

Wireless Universal Serial Bus Specification. Revision 1.1

74

presentation time. The host will continue to try to send data until it is forced to discard data when the
presentation time for data that has not been transmitted has expired. The host must discard data to an
isochronous OUT function endpoint if the presentation time for the data has expired. Section 4.11.9 examines
error handling in more detail. There are methods for communicating the amount of information that has been
discarded and options for attempting to prevent host discards from occurring.

4.11.6 Choosing an Isochronous IN or Isochronous OUT Endpoint Buffer Size
Buffer size is an application specific decision involving the following factors:

1. Desired short term error tolerance.

2. Cost.

3. Acceptable stream delay/latency.

At a minimum an isochronous OUT function endpoint must have enough buffering associated with it to tolerate
the longest possible over the air latency between service attempts – 8.192 milliseconds. Additional buffering
provides additional short term error tolerance.

Warning: If only 8.192 milliseconds of buffering is provided the stream may fail with only a single error on an
over the air transmission if it occurs immediately before or after the longest gap in over the air service.

Additional error tolerance is provided by using additional buffering to provide delay in the stream. If the stream
has latency requirements, the amount of buffering that can be added is limited.

Note: An isochronous stream may have different latency requirements in different use situations. An
isochronous device can provide alternate settings that report buffer sizes less than the physical buffering
available. The endpoint must only use the amount of buffering (delay) reported in the selected alternate setting.

When there are no latency requirements, or the latency requirements allow a large amount of latency, the
implementer must make a trade-off between short term error tolerance and buffering cost.

The endpoint buffer size is reported as wMaxStreamDelay in the Wireless USB Endpoint Companion
descriptor, see Section 7.4.4. The wMaxStreamDelay parameter is reported in units of time. For an isochronous
IN endpoint the value indicates the smallest amount of time it will take to fill the buffer from empty and cause
the first discard if no data is being drained from the endpoint buffer by the host. For an isochronous OUT
endpoint buffer, wMaxStreamDelay represents the smallest range in presentation times for data that can
completely fill the endpoint buffer if it is not passing data to the data sink. The time is measured specifically
from the first (smallest) presentation time in the buffer to the presentation time of the first packet that could not
be accepted due to lack of buffering.

4.11.7 Isochronous OUT endpoint receiver implementation options
A host should discard any packets whose presentation time has expired. When a host discards data packets
during a burst to an isochronous endpoint it must not reuse the same sequence numbers to transmit new data
packets and.

An Isochronous OUT endpoint receiver determines which packets have been discarded by the host by observing
the presentation times of the packets that it receives.

Figure 4-35 shows the transmit and receive window characteristics for an example receiver burst engine that
will be used as the basis for discussing different implementation options.

 Wireless Universal Serial Bus Specification, Revision 1.1

 75

T1

T2

T0
S7

S
6

S3

S
2

S
1

S0

S
5

S4

Host Transmit Window Device Receive Window

S0, S1, S2

S7

S
6

S3

S
2

S
1

S0

S
5

S4

ACK (0
0111000)

Figure 4-35 - Receive window for isochronous OUT function endpoint with a burst size of 3 and
maximum burst sequence number of 8.

Each isochronous data packet is associated with a burst sequence number SN, and a presentation time TN. Burst
sequence-numbers are used to keep transmit and receive windows synchronized as described in Section 5.4.
Presentation-time is used by the host for determining when data packets should be discarded and is used by the
device for determining when the data should be consumed. A host should discard isochronous packets when
their presentation time has expired.

In Figure 4-35 the device has correctly received the data packets associated with S0, S1 and S2 and notified the
host that it is ready to receive that next burst of data (S3, S4, S5).

After the next burst the data packet associated with S3 is not received. The other two packets associated with S4
and S5, are received successfully as shown in Error! Reference source not found..

Wireless Universal Serial Bus Specification. Revision 1.1

76

S7

S
6

S3

S
2

S
1

S0

S
5

S4
T4

T5

Host Transmit Window Device Receive Window

X
S3, S4, S5

S7
S

6

S3
S

2

S
1

S0

S
5

S4

ACK (1
1001000)

S7

S
6

S3

S
2

S
1

S0

S
5

S4

Figure 4-36 - Receive window after 2 of 3 packets are received successfully in second burst.

At this point, the presentation time T3 expires and the host discards the packet associated with S3.

The next burst transmitted by the host will contain data packets containing timestamps T6, T7 and T8 associated
respectively with S3, S6 and S7.

S7

S
6

S3

S
2

S
1

S0

S
5

S4
T6

T
7

Host Transmit Window Device Receive Window

S3, S4, S5

S7

S
6

S3

S
2

S
1

S0

S
5

S4

T8

Figure 4-37 – Receive window after host discards a packet.

4.11.8 Synchronization
To allow for synchronization of clocks between Wireless USB devices, the Wireless USB host must provide a
Wireless USB channel time stamp in each MMC. This time stamp provides similar functionality for
isochronous function endpoints needing synchronization as the indexed (micro)SOFs provided in USB 2.0. The
time stamp format and accuracy requirements are described in Sections 4.3.1, 4.3.2 and 4.3.3.

 Wireless Universal Serial Bus Specification, Revision 1.1

 77

4.11.8.1 Synchronizing a Stream Start Time
The unreliable wireless media creates a problem for stream synchronization. In wired USB the time at which an
isochronous IN function endpoint starts producing data is deterministic. Consider a typical wired isochronous
IN device with two (micro) frames of buffering. The (micro) frame in which the first data request is made is
specified as frame (microframe) X. The data returned by the device in response to the request in frame X is
produced starting at the beginning of frame X-1.

In wireless USB the time when data is first produced for a wireless USB isochronous IN stream is less
deterministic. The layout of reservations in the superframe (if the Wireless USB host is sharing it with other
devices) and the potential for several successive packet errors, create uncertainty in the starting time for data
production by the isochronous IN endpoint. For some stream types this uncertainty is acceptable. If a stream
needs to specify the exact starting time of data production an out of band mechanism can be used.

Figure 4-38. Isochronous Endpoint Device Uses Out Of Band Mechanism To Specify Time For Data
Production To Start

In Figure 4-38 an isochronous IN endpoint device is shown. The device does not start data production until
time X. This time is specified via an out of band mechanism before the stream starts. The exact form of the out
of band start time request is a device specific. If the device receives a request before time X it will NAK. At
time X it will start producing data and respond normally to subsequent requests. An out of band request can
also be used to synchronize multiple streams.

4.11.9 Error Handling Details
This section provides additional details on handling errors in the Wireless USB isochronous model. The
primary error case in the Wireless USB isochronous model occurs when the transmitter must discard a packet.
This can occur when the physical buffer overflows for an isochronous IN function endpoint or when a packet
can not be transmitted to an isochronous OUT endpoint by the host before its presentation time expires. In
these cases there must be a mechanism by which the receiver is informed that the overflow occurred. The
receiver must also be able to determine the severity of the overflow. The following sections describe
transmitter behavior when a buffer overflow occurs in more detail.

4.11.9.1 Reporting Data Discarded At the Transmitter
The basic mechanism for reporting discarded data in the isochronous model is accomplished by embedding
isochronous header information in the data packets. Each isochronous data packet sent has an isochronous
header that includes a presentation time and one or more data segments. If the packet contains multiple
segments, the presentation time is associated with the initial data segment. The presentation time for additional
segments is inferred from the bInterval value for the endpoint. For an isochronous IN endpoint, the presentation
time represents the Wireless USB Channel time when the data was produced. For an isochronous OUT function
endpoint the presentation time indicates the Wireless USB Channel time when the data is to be consumed. If an
isochronous IN function endpoint discards a packet before it can be successfully transmitted it does not reuse
the presentation time of the discarded packet. This allows the receiver to learn when packets are discarded and
how many packets have been discarded. The specific format of the data packets is defined in the protocol
chapter.

Figure 4-39 shows an example where data must be discarded by a Wireless USB isochronous IN endpoint.

Wireless Universal Serial Bus Specification. Revision 1.1

78

Figure 4-39. Isochronous IN Function Endpoint Transmit Buffer Overflows

The isochronous IN endpoint in this example produces an average of 2 packets every 4.096 milliseconds. The
isochronous IN endpoint in this example has a maximum burst size of one. Each packet is 1 kilobyte in size.
The packets are produced at regular intervals. The device contains enough buffering to store 8 of these packets.
The WUSB host has reserved enough time to allow the device to send 3 packets during the slice of time the
WUSB host controls each 4.096 millisecond interval. The stream has been up and running without errors until
interval 1. In interval 1, all three attempts to receive a packet from the endpoint are corrupted. The presentation
time for this packet is presentation time #1. The endpoint buffers the packet with presentation time #1 and the
additional packet it created that interval with presentation time #2. In the next interval (interval 2), the packet
with presentation time #1 is sent successfully on the second attempt. The first attempt to send the packet with
presentation time #2 also fails. At the end of interval 2 the device now has three packets buffered. During
intervals three and four all three attempts to send data fail. At the end of interval 4 the endpoint now has 7
packets stored in its buffers. During interval 5, all three attempts to send the packet with presentation time #2
fail. At some point during interval 5, the endpoint has produced another packet of information and has nowhere
to store it. It must discard the packet of information with presentation time #2 (oldest) to store the new packet.
During interval 7, all three transfer attempts are successful (packets 3, 4, and 5). The device buffer has one
empty space at the end of the interval. If the link quality remains good the stream will recover and reach the
state where the isochronous IN endpoint buffer is nearly empty. The receiver will be able to detect that a sample
produced at presentation time #2 was not received.

4.11.9.2 Discarding Data during a Burst
An isochronous stream may use a maximum burst size greater than one. Data may be discarded when the
transmitter buffer overflows or when a presentation time expires on a packet the host is attempting to transmit to
an isochronous OUT function endpoint. When a packet is discarded by an isochronous IN function endpoint, it
simply begins to try to send the next packet using the same burst information (burst sequence number) as the
discarded packet. Only the presentation time and the actual data are different for the new packet.

The same is true when a host discards a packet for an isochronous OUT endpoint because the presentation time
has expired.

4.11.9.3 Application Handling of Discards
As Figure 4-39 shows, if the channel conditions improve the stream may recover from a series of errors with
only a minor loss of data. If the channel stays poor, large amounts of data may be lost over several intervals. It
is an application specific decision as to when a stream should be terminated if errors persist. However, there are
options that can be utilized by the host or endpoint to attempt to prevent discards from occurring. These options
are described in Section 4.10.

 Wireless Universal Serial Bus Specification, Revision 1.1

 79

4.12 Device Reset
Wired USB uses specific electrical signaling on the D+ and D- lines to signal a USB reset to the device. Upon
receipt of reset signaling, the device enters the USB Default state and sets its USB address to the Default
Address (0).

Wireless USB does not have the option of using specific electrical signaling to signal a reset to the device.
Instead, the action must be initiated by sending a ResetDevice_IE which targets a particular device (see Section
7.5.9). This IE is targeted to a particular device via that device’s CDID value. The device that decodes the
ResetDev_ID that matches the CDID must perform an effective ‘hard’ or ‘power-on’ reset and return to the
UnConnected device state (see Section 7 for definition of all device states). The intent of this form is to provide
the host some mechanism to quickly reset a device when there may be some ambiguity about what state the
device is in or what device address it is at.

Wireless USB also provides for a lighter form of device reset, via SetAddress (zero). For Wired USB devices,
device response to Set Address with a value of 0 is undefined. For Wireless USB devices, a device receiving a
Set Address with a value of 0 resets its address to the Default Address and enters the Default state. Any
existing endpoint state is lost. Connection state is not reset. The intent of this form is to reset the function on
the device without completely removing the device from the cluster.

4.13 Connection Process
USB 2.0 association is based on a device-initiated model, e.g. the device detects power on its upstream port and
signals a Connect by asserting D+ (or D-), which is detected by the associated port and eventually responded to
by the host with a Port Reset and subsequent information exchange over the Default Endpoint. Wireless USB
implements a similar device-initiated connection model, i.e. the device finds and initiates a connection with its
host. After an initial channel has been chosen (Appendix D) the general model of the connection process and
roles each device plays are described in the remainder of this section. Details of the mechanisms used to
implement this process are defined in the Protocol (Chapter 5Error! Reference source not found.) and
Framework (Chapter 7).

If a device wants to connect the host, it must include a WUSB ASIE and a DRP Availability IE in its beacons.
In the WUSB ASIE, the device sets the EUI-48 field to the EUI-48 of the host that the device wants to connect
to, and sets the device address field to 0xFF. The host uses information in the device’s WUSB ASIE to detect
the device’s connect intention. The host then uses information in the device’s DRP Availability IE to adjust the
Wireless USB Channel reservation so that at least part of the Wireless USB Channel reservation is overlapping
with the device’s available MASs.

When no device is connected to the host, the host shall implement intermittent switching between Band Group 1
and Upper Bands, as described in 4.3.8.

Hosts include a Host Information IE in selected MMCs. The host also (via the MMCs) makes available DNTS
opportunities which may be used by devices to transmit connect requests to the host. The host reserves MAC
Layer channel time across the super frame for the Wireless USB Channel, and will then randomly move the
location of the DNTS window(s) for connect opportunities within the Wireless USB Channel, so that they
overlay different MAS slots over time, see Figure 4-40.

Wireless Universal Serial Bus Specification. Revision 1.1

80

Figure 4-40. Example Connection ‘Random Hop’ DNTS Placement over Time

The security framework (see Section 6.2.8) requires that devices retain information about the host it was
previously connected to (Connection Context). The Connection Context may be initialized for ‘new’ devices via
out-of-band ‘provisioning’ methods which establish on a device, information about its intended host including
the host’s name (Connection Host ID - CHID) and a secret shared with for that host. A ‘new’ device may also
support being provisioned via the Default Control Pipe. This is referred to as in-band provisioning. For most
scenarios, whether by out-of-band provisioning or simply residual information from a previous connection, the
host’s identity is usually known before the device attempts to connect. See below for details on the connection
process when a CHID is not known by the device prior to an association attempt.

An unconnected “provisioned” device that is looking to establish a connection with a known host locates a
MAC Layer channel which encapsulates the Wireless USB Channel being maintained by its intended host. The
device locates the correct Wireless USB Channel by capturing and processing MMCs in each observable
Wireless USB channel looking for an MMC that contains a Host Information IE with a CHID value that
matches the CHID in the device’s local host context. When a match is found, the device includes a WUSB
ASIE and a DRP Availability IE in its beacons. In the WUSB ASIE, the device sets the EUI-48 field to the
EUI-48 of the host, and sets the device address field to 0xFF. The host might need to adjust the Wireless USB
Channel reservation according to the device’s DRP availability information. Depending on its DRP availability,
the device accepts part of or the entire host Wireless USB channel reservation by including DRP IE in its
beacons. The device then follows the MMC control stream in the Wireless USB Channel looking for a DNTS
opportunity during which it will attempt to transmit a DN_Connect notification. A device making a connection
always uses the UnConnected_Device_Address when transmitting a DN_Connect notification to the host (see
Section 7.6.1). The payload of this request includes (at least) the device’s name (Connect Device ID, e.g.
CDID) which is 16 bytes of device unique information. The device then waits for a Connect Acknowledge
response (see Section 7.5.1) which includes the device’s name (i.e. CDID) from its DN_Connect notification
and a Wireless USB channel device address. The device must retransmit the connect notification until it
successfully receives a connect acknowledge from the host (see below). Retransmissions are implementation-
specific, but should occur no more frequently than three times per 100 milliseconds. A device attempting to
connect should check all Host Information IEs it encounters to ensure that the host remains open for connection
requests.

When a host receives a connect notification, it allocates a Device Address from the
UnAuthenticated_Device_Address_Range and then includes a Connect Acknowledge IE in a subsequent MMC.
The host must retransmit the connect acknowledgement until it observes the device responding to control
transfers to its Default Control Pipe at the assigned Wireless USB channel address. The rate of retransmission is
host-implementation specific.

On reception of the connect acknowledgement, the device updates its Wireless USB channel device address and
then begins listening on the Wireless USB Channel for host transactions directed to its Default Control Pipe at

 Wireless Universal Serial Bus Specification, Revision 1.1

 81

the new device address. The device then proceeds through the Authentication process which is driven by the
host using control transfer requests over the device’s Default Control Pipe.

Once the host and device have completed mutual authentication, each has the proper session key for
encrypting/decrypting protocol data and handshake packets. The host completes the connection process with
two final steps. First, it uses SetKey() to give the device a copy of the Wireless USB cluster group key. The
device requires this key in order to authenticate MMCs packets. At this point, the device and host have a secure
relationship established. The final step in the connection process is the host uses SetAddress() to set the device’s
device address to zero, which transitions the device into the USB 2.0 equivalent of the Default device state.

A device that has no valid Connection Context but is capable of being provisioned via the Default Control Pipe
may request a connection with a host provided the host indicates that it is accepting connections from unknown
devices. This advertisement is further described in Section 7.5.2. When the device locates a host making such
an advertisement, the device makes an attempt to connect as described above, indicating the connect request is
for a New connection. Such a device must also create a temporary CDID value to use in the connect request.
This is covered in more detail in Section 6.2.10.3.

The connection process proceeds as described above and the device transitions to the UnAuthenticated device
state. While in this state, the host will determine the provisioning capabilities of the device and attempt to
provision the device with a valid Connection Context. This provisioning involves establishing a common
security mechanism, e.g. public key cryptography to protect the Connection Context. Once the Connection
Context has been delivered to the device, the host will initiate the mutual authentication 4-way handshake.
When the 4-way handshake is successfully completed, the host and device complete the establishment of the
connection as described above.

4.13.1 Reconnection Process
A device may lose contact with its host (i.e. not receive any valid host packets) for a period of time longer than
the TrustTimeout (see Section 6.2.10.2). Whenever a TrustTimeout occurs, the device begins listening for its
host (as it does from the UnConnected state). When it reacquires its host’s Wireless USB channel, the device
makes a reconnect request to the host. A reconnect request is simply an encrypted DN_Connect device
notification with the Previous Address field set to the device’s current USB address. This notification is simply
asking the host to be allowed to resume operation at that address. If the host does not remember the device
(cannot decrypt the notification), it will not respond to the connect notification and the device should then try to
re-connect from the UnConnected device state (i.e. unencrypted DN_Connect). The host may acknowledge the
DN_Connect with either the device’s previous address or a device address in the UnAuthenticated device
address range. The host will then initiate the authentication process. If this completes successfully, the device
returns to its previous operational state (i.e. before the TrustTimeout). Note the host may need to restore the
device’s previous address via a SetAddress(previous address) command before the device is restored to its
previous operational state. Note, Section 7 provides a detailed device state diagram and summary description of
all the device states.

Note that a host has the option of not being available for connections as represented in the Host Information IE
(see Section 7.5.2). When a host is reporting that it is not available for connect requests, it must remain
available for reconnect requests, as defined above.

4.13.2 Connect to me
As described in the chapter 1.7.2, in the wireless world the user has come to expect a host and device both to be
capable of discovery, negotiation and connection. Wireless USB implements a device-initiated connection
model as default, i.e. the device finds and initiates a connection with its host. “Connect to me” model is a host
initiated connection process with known or unknown wireless USB devices. Wireless USB device will complete
this by connecting to the requesting host keeping the framework of wireless USB unchanged. A “known”
device is a device that is already associated with the requesting wireless USB host.

4.13.2.1 CTM requirements for Wireless USB device
Wireless USB shared devices shall include in their beacon at all times the WUSB Protocol Version IE, WUSB
Capabilities IE, Device Status IE and Device Class Code IE. All WUSB Hosts shall support Connect To Me.

Wireless Universal Serial Bus Specification. Revision 1.1

82

A device which supports Connect To Me shall set the Shared Device bit in the WUSB Capabilities IE. A
device which supports Connect To Me shall include the WiMedia Identification IE in its beacon. This
information allows a WUSB host to uniquely identify the device in the beacon, know its capability, and target it
for connection. A device which supports Connect To Me, and supports requests from other hosts while
connected may indicate that it supports Hand-off by including the Supports Hand-off bit in the WUSB
Capabilities IE. A shared device can never represent a Supports Hand-off bit in its WUSB Capabilities IE that
is different than the Supports Hand-off bit in the WUSB Capabilities IE of the host to which it is currently
connected.

Wireless USB shared devices that are in the UnConnected device state are required to scan for WUSB hosts
which include the Shared Host bit in their WUSB Capabilities IE. When a device does discover a host which
supports Connect to Me it shall beacon on that channel advertising its required IEs for at least 8 superframes (~
MaxLost beacons). The Shared device is allowed to move to the next channel after its beacon has been heard (
BPOIE representation). The device shall return to a channel on which it has beaconed within 20 seconds.

4.13.2.2 CTM procedure
Connect to Me is achieved by having the device search for hosts within radio range and beaconing on the same
channel as that host. A Shared Device shall only beacon on channels which have WUSB Hosts that include the
Host Supports CTM Bit included in its WUSB Capabilities IE. By beaconing (WUSB IE with WUSB
Capabilities IE, WUSB Protocol Version IE, Device Status IE and Device Class Code IE) on the same channel
as hosts that support Connect to Me, the device allows the host to learn all the information the user needs to
determine if they want it connect. The device, after it has beaconed for a certain amount of time, will go and
find other hosts on other channels, but is required to return within 20 seconds This allows the system know if a
device has been powered down or either device has been moved out of range of each other, or has been
connected to another host. If the user does want the device to connect, the host will include a Connect To Me
IE in its WUSB IE with the devices MAC address. The host will also include its preferred association model
with the device (Numeric Compare / Fixed Pin). A Device once in any state other than Unconnected and is not
representing the Supports Hand-off bit in the WUSB Capabilities IE shall not process a Connect To ME IE
targeted to its address.

Once a WUSB device is connected to a WUSB Host it stays connected unless explicitly disconnected. It follows
all rules of the WUSB device frame work including reconnection and trust timeout.

If a WUSB Shared device is currently connected to a WUSB Host, other hosts may scan and join the channel
where these devices are connected in an attempt to acquire the WUSB Shared device.

4.13.2.3 CTM Hand-off
When a WUSB Shared device is connected to a WUSB Host it reflects if it can support Hand-off requests by
including the Supports Hand-off bit in the WUSB Capabilities IE. The device shall never represent support of
Hand-off if the current host which it is connected does not support the function. A device which does support
Hand-off can be targeted by Connect To Me IEs from hosts looking to connect to this WUSB Shared Device.
When a WUSB Shared Device which is currently in an active connection to a WUSB host detects that another
hosts wishes to have it connect to it issues a DN_OtherHostConnectReq to active host. The active host, when
it receives this request, can issue a DN_Disconnect which allows this shared device to then go and connect to
the other host, or explicitly deny the request by including a Connect To Me NAK targeting the WUSB Shared
Device. If an explicit deny is received by the WUSB Shared Device it will then include a Connect To Me
NAK targeting the host wishing to connect to the WUSB Shared Device. There is a 2 minute implicit timeout
for the hand-off, where a device does not issue a DN_Connect or include a Connect To Me NAK that the host
wishing to connect will not release the resource.

4.14 Disconnect
Wireless USB supports two disconnect models: explicit and implicit, however neither is equivalent to the USB
2.0 disconnect model. The explicit disconnect model allows the host or device to initiate a disconnect event.
When the host initiates a disconnect event, it is essentially removing the device from its Wireless USB cluster

 Wireless Universal Serial Bus Specification, Revision 1.1

 83

(i.e. tears down the secure relationship, frees up internal resources for tracking the device, etc). When the device
initiates a disconnect event, it is simply notifying the host that it is leaving the cluster so that the host can
explicitly ‘forget’ the secure relationship, etc. Disconnected devices may attempt to reconnect at any time. A
host initiated disconnect event has the following process:

 The host sends three consecutive WDEV_Disconnect_IEs or WHOST_Disconnect_IEs (to disconnect
all devices in cluster).

 The device disconnects immediately and enters the Un-Connected state.

A device initiated disconnect event has the following process:

 A device sends a DN_Disconnect notification during a DNTS period to notify the host (see Section
7.6.2). This notification tells the host that the device is going to disconnect. The device should wait for
a response from the host before disconnecting and should retry at least twice before disconnecting if no
host response is observed.

 The host responds to the device DN_Disconnect notification in a subsequent MMC with a
WDEV_Disconnect_IE, targeting the requesting device. The device disconnects immediately and
enters the Un-Connected state when it sees the host response.

In wired USB, a disconnect event has significant impact on both the host and device state. The host releases
buffers and the device address because it knows the device is gone and relies on the wired connect and device
enumeration events to occur to return the device to operation. There are many scenarios for the wireless
environment (interference, distance change, security, etc.) where it is desirable to be flexible about when to
detect an actual disconnect event and trigger release of resources and force a full re-enumeration and
initialization. The implicit disconnect model embodies this flexibility.

The basic model of the implicit disconnect is tied to the TrustTimeout threshold. In general, Wireless USB
requires the host and device to keep its notion of TrustTimeout intact. This leads to a consistent user experience
because when they attempt to use an idle device, chances are good that the device is available (or will be
available in a reasonable amount of time). A host may implement a policy where a device is ‘disconnected’
whenever the host observes a TrustTimeout for that device.

The mechanisms defined to accommodate refresh of the Trust relationship are different, depending on the
operational state or communications load on the device (device scenario). The mechanisms are described below,
based on the individual device scenarios. Note, the host and device views are described as appropriate.

 Active. In this scenario, the host is actively communicating with the device. When data is flowing, both the
host and device are seeing packet transmissions from each other within the TrustTimeout threshold.

 Idle. In this scenario, the host is not actively communicating with the device (i.e. the owning device driver
is not actively attempting to move data to/from the device, or all active function endpoints are flow
controlled). The device however, won’t experience a TrustTimeout as long as it can successfully track the
Wireless USB channel (i.e. MMCs). However, since the host is not actively scheduling transactions to any
function endpoints, the host observes no encrypted packets from the device. In this situation, the host will
activate a ‘keep alive’ poll by use of the Keepalive IE/DN_Alive mechanism (see Sections 7.5.8 and 7.6.5).
This mechanism allows the host to specifically request one or more devices to send a DN_Alive or
equivalent notification to the host. The successful reception of a notification from the device will restart the
TrustTimeout period for the associated device. Note that once the host includes a device’s address in a
Keepalive IE, it will remain there until it either successfully receives a notification packet from the device,
or it encounters a TrustTimeout. Similarly, a device will continue to transmit DN_Alive or equivalent
notifications until the host removes the device address from subsequent Keepalive IEs or the device
observes an MMC without a Keepalive IE or it experiences a TrustTimeout.

 Sleep. This scenario is described in detail in Section 4.16.1.1.

Loss of Activity is the scenario that all other scenarios degrade to when the host and device are unable to
successfully receive each other’s packets for at least a TrustTimeout period. When an active device loses an
MMC, it should go into an ‘open scan’ mode (continuous listening) looking for an MMC transmission from its
host. Looking for an MMC from a host in this context can be as simple as matching on a transmission addressed

Wireless Universal Serial Bus Specification. Revision 1.1

84

to the cluster, which includes the correct Cluster ID and Stream Index value in the MAC header, in addition to
the correct frame type, etc. If the device fails to observe host activity (MMCs) for 500 milliseconds it should
initiate its host detection process.3 If the device re-acquires the Wireless USB channel before a TrustTimeout
occurs, then the device may continue normal operations. After a TrustTimeout event, the device must transition
to the Reconnecting device state and continue looking for the Wireless USB channel of its host. Looking for a
host in this context includes finding an MMC with a Host Information_IE that has the correct CHID value. On
subsequent host Wireless USB channel acquisition, the device will attempt to re-connect for at least 100 ms. If
the host does not respond to the re-connect attempts, the device must then transition to the UnConnected state
and can then begin connect attempts.

When a Sleeping device returns to the Awake state, it begins looking for MMCs from its host on the same PHY
channel it last saw MMCs from its host. It searches for MMCs via an open scan. Similar to above, if it cannot
locate the correct MMC for 500 milliseconds, it should begin looking for its host on other PHY channels. See
Section 4.16.2.2 for details on behavioral requirements for Remote Wake.

4.15 Security Mechanisms
The security mechanisms described in this specification are implemented using the security mechanisms of the
MAC Layer. This section describes the mapping between Wireless USB security concepts and MAC Layer
security concepts see reference [3]. Refer to Section 6Error! Reference source not found. for complete
security details.

Wireless USB hosts and devices operate in MAC Layer Security Mode 1. This mode allows Wireless USB
devices to connect using Wireless USB Control requests encapsulated in MAC Layer data frames.

A device receives a group key from the host at the completion of a successful 4-way handshake. However, a
device must be able to receive MMCs from the host in order to locate the host and start the 4-way handshake.
A device is permitted to successfully receive secured MMCs if it is not yet in possession of the valid group key.
When the device receives a group key from the host, it should begin validation of the MMCs as described for
the MAC Layer.

4.15.1 Connection Lifetime
Wireless USB requires that data communications must occur frequently enough to keep the trust relationship
intact. If a host does not receive any authenticated packets from a device or a device does not receive any
authenticated packets from its host for a TrustTimeout period, the host (or device) must force a re-authentication
(i.e. 4-way handshake) before resumption of normal data communications. The duration of TrustTimeout is four
(4) seconds.

4.15.2 Host Security Considerations

4.15.2.1 CHID Selection
Devices use the CHID field of a connection context to locate a host. To insure uniqueness in the presence of
multiple hosts, a host should develop its CHID value from other values that supply uniqueness, such as the
host’s EUI-48 address.

4.15.2.2 CDID Selection
CDID values should be derived using the PseudoRandom Function PRF-128. This is described in Section
6.2.10.1

4.16 Wireless USB Power Management
Wireless USB provides mechanisms that allow hosts and devices to opportunistically and explicitly control their
power consumption. Because Wireless USB protocol is TDMA-based, hosts and devices know exactly when

3 A host detection process can involve scanning other PHY channels for the host, perform a continuous open scan,
etc.

 Wireless Universal Serial Bus Specification, Revision 1.1

 85

their radios do not need to be transmitting or receiving and can take steps to conserve power during these times.
Other mechanisms allow hosts and devices to turn off their radios for longer periods of time. The sections
below cover power management mechanisms available for devices and for hosts and define the interactions
between the two.

4.16.1 Device Power Management
Wireless USB provides a variety of mechanisms which can be used by devices to manage their power
consumption. These include:

 Taking advantage of the TDMA nature of the Wireless USB protocol to opportunistically turn the
radio off during periods when it isn’t needed. Devices can do this at any time with the host being
unaware of the efforts. Transaction group structure and the gap between transaction groups, provide
intervals from microseconds to tens of milliseconds.

 Taking advantage of Master MMC IEs, when provided by the host, to track the MMC sequence at a
lower frequency. The host must provide Master MMC IEs and appropriate Work Pending indications
but is unaware of device efforts to manage power based on them. This mechanism is described in
7.5.11. The Master MMC mechanism is intended to provide intervals from hundreds of microseconds
to tens of milliseconds.

 Going to ‘sleep’ for extended periods of time but staying ‘connected’. In this case the device will not
be responsive to any communications from the host. Device ‘sleep’ can be initiated either by the host
or independently by the device itself. Devices that initiate ‘sleep’ independently must notify the host
before sleeping. Details of the mechanisms for notifying the host are provided in Section 4.16.1.1.
Host directed device sleep is intended to provide intervals from tens of milliseconds to thousands of
milliseconds.

 Disconnect from the host. The mechanism for device disconnect is covered in Section 4.13.2.

4.16.1.1 Master MMC
A Master MMC concept is used to achieve the objective of reducing the frequency of MMCs that a device must
track without missing transactions or other information. The Master MMC appears at a lower frequency than
regular MMCs. For the devices with the ‘TrackAllMMCs’ flag set to zero in their device capability IE data, It
includes indications that work is pending and will be scheduled for specific devices in the following MMCs, so
that devices should not lose data or control transactions. Rules are provided for the inclusion of IEs so that
devices should not miss IEs intended for them.

Hosts and devices, that comply with revision 1.1 and up of this specification, are required to support the Master
MMC.

A Master MMC is the first of, up to three, MMCs that include repetitions of the Master MMC IE. The Master
MMC Period is defined as the time between two Master MMCs. The Master MMC IE includes the following
information:

 Next Master MMC Time. The time from the beginning of this MMC until the beginning of the next
Master MMC. This provides an alternate path through the MMC sequence, enabling devices that have
no work pending, to track a lower frequency sequence.

 Work Pending indication. Devices identified as having work pending should remain awake and track
the full MMC sequence for the duration of the Master MMC period.

The format of Wireless USB Master MMC IE is described in 7.5.11.

A host that intends to schedule transactions for a device, which follows Master MMCs - ‘TrackAllMMCs’ flag
set to zero in device capability IE data, must include a Work Pending indication in a Master MMC IE before
scheduling the transactions. This allows devices that do not have Work Pending indications to skip tracking of
MMCs during the Master MMC Period without the risk of missing transactions scheduled for them.

A host that intends to schedule transactions for a device that it views as asleep, as described in 4.16.1.1, must
also include the Work Pending indication in the Master MMC IE. However the devices that are marked as

Wireless Universal Serial Bus Specification. Revision 1.1

86

‘TrackAllMMCs’ can be exempted from this requirement and can be scheduled without including a work
pending indication in the Master MMC. The host should not schedule transactions for the device before
receiving a notification from the device indicating that it is awake, as described in 4.16.1.3.

A host shall repeat the Master MMC IE in each of the intermediate MMCs following the Master MMC, up to
two times, if such MMCs are scheduled before the next Master MMC. The host is not restricted when
scheduling transactions to devices with Work Pending indications, during MMCs that include repetitions of the
Master MMC IE.

A host that begins to include an Information Element in MMCs shall do so in a Master MMC, except for the
WCTA IE and Wireless USB Connect Acknowledge IE or if the recipient of the IE has “TrackAllMMCs” flag
set to one in its device capability IE data.An IE that is to be broadcasted, need not wait till the next master
MMC if all devices have the flag set to one. Thereafter IEs are included in the following intermediate MMCs
based on their Stop Retransmission Condition. The host should also consider device DRP availability when
deciding on retransmission of IEs.

A host shall not start more than MaxMasterMMCsperSF new Master MMC Periods in a superframe. Master
MMC Periods shall begin during MAS with maximum device DRP availability in a DRP reservation block.

A device that does not receive a Master MMC IE must find and track the regular MMC sequence until the next
Master MMC IE is identified. A device that receives a Master MMC IE must track the following intermediate
MMCs if Work Pending was indicated for the device, otherwise the device may choose to continue tracking the
regular MMC sequence or the Master MMC sequence.

4.16.1.2 Device Sleep
During periods of inactivity, a device may want to conserve power by turning off its radio and being
unresponsive for an extended period of time. A device that decides independently to go to sleep is required to
notify the host before going to sleep and the host will acknowledge the notification. A device that is directed by
a host to sleep may sleep for the duration indicated by the host without further communication.

Device sleep can be initiated by one of these methods:

 Device uses the DN_Sleep (want to sleep) notification to notify the host that it is going to sleep if there
is no work pending indication from the host. The sleep period is not known to the host so the device
must communicate with the host after waking up.

 Device uses the DN_Sleep (going to sleep) notification to notify the host that it is going to sleep
unconditionally (whether work is pending or not). The sleep period is not known to the host so the
device must communicate with the host after waking up.

 Host uses a Device Sleep IE to direct the device to go to sleep for a specific period of time. Since the
length of sleep time is known to both host and device, no additional communication is needed after
device wakeup.

A device uses the DN_Sleep notification sent during a DNTS period to notify the host of its intent to transition
to the Sleep state. The format of the DN_Sleep notification can be found in Section 7.6.4. There are two types
of Sleep notifications described by the DN_Sleep notification:

 Device is going to sleep. This notification tells the host that the device is going to sleep
unconditionally. The device should wait for a response from the host (see below) before going to sleep
and must retry at least twice if no host response is seen. After three attempts, a device may choose to
go to sleep without seeing a host response after 3 MMCs have occurred after the last attempt.

 Device wants to go to sleep. This notification tells the host that the device is going to sleep if there is
no pending work for the device. The device must wait for a response from the host and depending on
the host response decide whether or not to go to sleep. If no response is seen, the device may retry or
decide to stay awake.

In response to a DN_Sleep notification a host generates a Work IE acknowledgement (see Section 7.5.6) and
may also include a Device Sleep IE. The host includes the IEs in three successive MMCs. Work IEs contain
information indicating whether or not there is work pending for the device. If there are no operations queued

 Wireless Universal Serial Bus Specification, Revision 1.1

 87

for a device or if the only operations are on Interrupt IN endpoints or flow controlled (ie. inactive) IN endpoints,
then the host response will indicate No Work pending. For any other situation the host response will indicate
Work pending.

Table 4-7 shows the host view of the device power management state based on the different device notifications
and host responses.

Table 4-7. Standard Request Availability in Wireless USB Device States

Sleep Notification Host Response Device State (host view)

Going to Sleep Work Sleep

Going to Sleep No Work Sleep

Want to Sleep Work Awake

Want to Sleep No Work Sleep

A host may direct a device to transition to the Sleep state, whether it received a DN_Sleep notification or not.
The host includes the Device Sleep IE in three consecutive MMCs. Device Sleep IEs contain information
indicating which devices can transition to the Sleep state and how long they may sleep. The format of Device
Sleep IE is described in 7.5.10.

The host should consider device parameters when directing a device to transition to the Sleep state. The device
provides these parameters in the Wireless USB Device Capabilities Descriptor. The following parameters are
defined:

 wIdleTimeout. Time interval from the end of a transaction with the device until the host decides to
direct the device to transition to the sleep state.

 wWakeUpLatency. Time interval during which the device prefers to remain in a Sleep state that was
initiated by a host.

 bmControl. Flag to indicate that a host should strictly use the wIldeTimeout and wWakeUpLatency
values when directing the device to transition to the sleep state. When the flag is not set the host is free
to choose when to direct a device to transition to the sleep state and how long the device should remain
in the sleep state.

The host shall assume that the device is in the Sleep state from the end of the last MMC that included the
Device Sleep IE, until the first MMC after the interval indicated in the Device Sleep IE for that device.

The device shall ensure that it is in the Awake state no later than the end of a sleep interval as indicated in the
Device Sleep IE, that starts at the end of the last MMC that included a Device Sleep IE for the device.

When the host believes a device is in the Sleep state, the host will not schedule any transactions with the device.

There may be cases where the host believes a device is in a different power management state than the device is
actually in. For example, if the host does not see any of the Sleep notifications (maybe because of interference)
and the device decides to go to Sleep anyway, the host will think the device is Awake, when actually it is
sleeping. In this case, the host may schedule transactions for the device that will time out and the device may
end up being disconnected. This is a risk a device takes if it decides to go to Sleep before seeing a response
from the host.

Another mismatch between states could occur if the host sees the Sleep notification but the device does not see
the host response. In this case, the host thinks the device is in Sleep state, while the device is still Awake. This
state will typically resolve because the device will continue to send the Sleep notification until it sees a host
response.

Yet another mismatch between states could occur if the host includes the Device Sleep IE in MMCs but the
device does not see these MMCs. This case will automatically resolve after the sleep interval when the host
will again assume that the device is awake.

A device must not attempt to transition to the Sleep state while processing a control transfer (i.e. have not
responded with an ACK to the Status stage of the control transfer). It may attempt to transition to the Sleep state

Wireless Universal Serial Bus Specification. Revision 1.1

88

(beginning with a DN_Sleep notification) after it has responded to the Status stage of a control transfer with an
ACK (or STALL, signaling its completion of the control transfer). The device must not transition to the Sleep
state if the host responds with either a Work_IE (Work) or another transaction (or transaction phase) addressed
to the device.

4.16.1.3 Device Wakeup
After entering a Sleep state, not initiated by a Device Sleep IE, devices may want to occasionally check with the
host to find out if there is any work pending. The device may want to go back to the Awake state even when
directed to sleep by the host because the device now has data to deliver to the host (maybe for an Interrupt IN
endpoint).

To check for pending work, the device may track the Master MMC sequence. When transfers are requested by
an application the host will indicate Work Pending in the Master MMC IE also for devices that it views as
asleep.

The device may also check for pending work by sending a Sleep notification as described above and the host
makes the same responses as described above. The state of the device again corresponds to Table 4-7 above. In
addition to the Work_IE rules, a host may also include a Device_Sleep_IE, directing the device to return to the
sleep state for a specific period. Devices must not check for pending work any more often than every 100
milliseconds. There is no maximum time limit specified for how often a device must ‘check in’ with the host,
although devices that don’t ‘check in’ at least once every TrustTimeout are likely to be disconnected. See
Section 4.13.2 for a description of disconnect mechanisms and timings.

During the sleep interval indicated in a Device Sleep IE, a device may send the DN_Alive notification to the
host to indicate that it is in the Awake state.

When a device wants to transition from the Sleep state to the Awake state the device notification transmitted by
the device depends on whether the device has detected a TrustTimeout. If there has been a TrustTimeout, a
device must transmit a Reconnect Request notification (see Section 7.6.1.2) to the host. The host will respond
with a Connect Acknowledge IE, which returns the device to the UnAuthenticated state (see Section 7.5.1).
After re-authentication the host will begin scheduling transactions for the device. If there has not been a
TrustTimeout, the device will transmit DN_Alive notifications to the host. On successful reception of the
DN_Alive before a TrustTimeout, the host will start scheduling pending transactions, if any, for the device. The
host may perform a 4-way handshake at any time.

Anytime a device goes to sleep it runs the risk of the host disappearing or being disconnected from the host.
Host disappearance is detected when the device cannot find the Wireless USB channel (i.e. MMCs). In this
case, the device should revert to its standard procedure for finding a host. If the device can find the WUSB
channel, but the host never responds to the Sleep notifications, the host may have ‘disconnected’ the device and
the device may need to reconnect using a Reconnect Request notification.

The following table describes device wakeup behavior.

Table 4-8. Device Wakeup Behavior

Reason for
Wakeup

Device Behavior

Sleep initiated by device
(after sending DN_Sleep)

Sleep initiated by host
(Device Sleep IE)

Check for pending
work

Device finds and tracks Master
MMCs. Work Pending will be
indicated by the host even if the
host views the device as asleep.
The host will not schedule
transactions until the device
indicates that it is in the Awake
state.
If work is pending the device
transitions to the Awake state

Host will not schedule
transactions for the device until
after the interval indicated in
Device Sleep IE.
After this interval track Master
MMCs for Work Pending
indications.

 Wireless Universal Serial Bus Specification, Revision 1.1

 89

and sends notification to the
host (Reconnect Request or
DN_Alive).

Device decides to
end Sleep state

Device transitions to the Awake
state and sends notification to
the host (Reconnect Request or
DN_Alive).

Device transitions to the Awake
state. After sleep interval,
indicated in Device Sleep IE,
device tracks Master MMCs for
Work Pending indications.
Alternatively the device sends
the DN_Alive notification to the
host.

Host directed
sleep time expires

Not Applicable Device transitions to the Awake
state and tracks Master MMCs
for Work Pending indications.

Table 4-9. Host View of Device Wakeup shows the host view of the device power management state based on
the way device sleep was initiated.

Table 4-9. Host View of Device Wakeup

Sleep State Host View

Device initiated sleep Device is in Awake state after host receives DN_Alive or
Reconnect Request

Host directed sleep Device is in Awake state after the interval indicated in the
Device Sleep IE or sooner if the host receives a DN_Alive

notification

Once the host believes a device is in the Awake state, the host may schedule transactions in accordance with
Master MMC described in 4.16.1.1.

Figure 4-41 shows a state diagram for device power states. This diagram depicts the state transitions that a
device makes assuming that the device waits for a host response before making a state transition.

Wireless Universal Serial Bus Specification. Revision 1.1

90

Figure 4-41. Power state diagram for devices

4.16.2 Host Power Management
A host has two general ways to manage Wireless USB power. The first can be done during normal operation by
taking advantage of the TDMA nature of WUSB protocol and turning the radio off during periods when it is not
needed. During times of low activity, the host can manage the Wireless USB channel to have long periods
between MMCs and thereby have more time when the radio can be off. Devices are unaware of this power
management, and since the Wireless USB channel is maintained, they just follow from one MMC to the next.

The second general way for a host to manage power is to interrupt the Wireless USB channel, meaning that the
continuous string of linked MMCs is stopped. Some typical reasons for the host to do this include:

 The platform going to a low power state (Standby, Hibernate, …)

 The platform being shut down.

 The user disabling the radio

 Aggressive host power management

For this case, devices are made aware of the hosts actions through an explicit communication from the host.
This is described in Section 4.16.2.1. A Remote Wake mechanism is defined in Section 4.16.2.2. This allows a
sleeping host to be awakened by a Wireless USB device. Section 4.16.2.3 describes host and device behaviors
as the host ‘wakes up’ from either being asleep or off.

4.16.2.1 Channel Stop
When a host is going to stop the Wireless USB channel, it must tell devices ahead of time. The host does this
by including a Channel Stop IE in at least three consecutive MMCs immediately before the channel is stopped.
See Section 7.5.7 for details on the Channel Stop IE. Information in the IE includes the Wireless USB channel
time when the channel will stop. That time should match the end of the last MMC transmitted. In the last MMC

 Wireless Universal Serial Bus Specification, Revision 1.1

 91

before the channel is stopped, the Next MMC Time field is set to zero, and there should be no time slots
allocated.

Information in the Channel Stop IE includes an indication that the host expects devices to reconnect after the
channel is restarted, or that the host expects devices to start new connections after the channel is restarted.

If a host decides not to stop the channel after including Channel Stop IEs in MMCs, the host simply removes
the Channel Stop IEs from subsequent MMCs. After stopping a channel, the host can restart the channel at any
time.

Awake devices should not stop tracking the Wireless USB channel until after the channel stop time has been
reached. Anytime a device receives a MMC without a Channel Stop IE, it must keep tracking the Wireless USB
channel.

When a host stops the Wireless USB channel, it assumes that all devices have gone to the Sleep state.

The host may decide to stop beaconing whilst the channel is stopped. In this case, the host must include the
Hibernation Mode IE in its beacon to indicate the duration of time after which the host expects to restart
beaconing. Devices may use this information to plan their own sleep during the time that the channel is stopped.

When/if the host restarts the channel, devices may ‘reconnect’ with the host using the mechanisms described in
Section 4.16.1.3 that describes what devices can do when waking up.

4.16.2.2 Remote Wakeup
Wireless USB has a Remote Wakeup mechanism that allows a Wireless USB device to wake up a sleeping host.
A host that is checking for Remote Wakeup must transmit beacons for at least MaxLostBeacons+1 consecutive
superframes every remote-wake poll interval. The exact period, after which the host restarts beaconing (for the
purpose of checking for Remote Wakeup ASIE), can be derived from the Hibernation Mode IE included in the
host’s beacon.

A host that will be checking for Remote Wakeup must set the Remote Wakeup bit in the Channel Stop IEs that
it transmits prior to stopping the channel. It must also enable remote-wake in at least one of the devices that has
the capability. The host enables a device for remote-wake through the SET_WUSB_DATA request with
selector Wake Token – see section 7.3.1.6.

When a device has been enabled for remote-wakeup and wants to wake up a host, the device tries to find the
host’s beacon. Ideally, the device will find the host’s beacon within one remote poll interval (the host’s
required ‘polling’ rate). Devices may search for a longer time, but at some point will probably decide that the
host has disappeared and will follow device specific mechanisms for finding the host.

If the device finds the host’s beacon, the device will join the beacon group, if it is not already part of it, and
include the Remote Wakeup ASIE in its beacons (see section 7.7.7.9). If the host receives a beacon with a
Remote Wakeup ASIE and successfully matches the EUI-48 and the wake token, the host will restart the
WUSB channel. The device must send a Reconnect Request notification after the channel is operating. The
device must remove the Remote Wakeup ASIE from its beacon after MaxLostBeacons superframes.

4.16.2.3 Channel Start
To start or restart a Wireless USB channel, a host simply begins to transmit MMCs with DNTS IEs. Note that
hosts will do the appropriate MAC Layer PHY channel selection and DRP protocol before starting the Wireless
USB channel. Hosts should always try to use the same PHY channel used when previously operating, if at all
possible. When a USB channel restarts, if the host indicated in the Channel Stop IE that it is expecting devices
to reconnect after restart, the host will retain connection state from the last time the channel was running,
including session keys (GTK and the PTKs) and corresponding SFN values. For example, when a suspended
host resumes and restarts the channel, after indicating that it will be expecting devices to reconnect, the host will
remember devices that were previously connected and not have to fully re-enumerate those devices when they
reconnect. However, the host will always re-authenticate devices when restarting a channel. Devices that
reconnect within a TrustTimeout of a host restarting a channel are assured that they will not have to be re-
enumerated.

Wireless Universal Serial Bus Specification. Revision 1.1

92

When a device detects a restarted Wireless USB channel, wants to connect, and has retained its connection
state since the channel was stopped, the device sends a Reconnect Request notification to the host. If the device
has not retained connection state, then it sends a Connect Request notification to the host. In either case, the
host will respond with a Connect Acknowledge IE in a subsequent MMC and proceed with transactions to the
device.

In order to illustrate how the different fields in the Channel Stop IE could be used by the host and connected
devices, the following example scenarios are being provided. Please note that in the following discussion,
connection state refers to the information that is required to restart a connection, which includes session keys
(GTK and the PTKs) and the corresponding SFN values.

Scenario 1: Host System is going to reboot or shutdown:

In this case, the host knows that it is going to tear down all the PnP stacks and that it is not going to remember
any connection state when the channel gets restarted in future. It does not expect devices to remember any state
as well. The host indicates this by setting the Reconnect Bit in the bmAttributes field of Channel Stop IE to 0.

The device, on getting such a Channel Stop IE, goes back to its default scanning state.

Scenario 2: Host system is going to Sleep and does not want any devices to wake it up

In this case the host will not follow the remote wake mechanism but wants to preserve the PnP stacks for the
devices on resuming from sleep. The host will remember the connection state and expects devices to remember
the connection state as well, so that, when the host resumes from sleep, the devices send the host a re-connect
(encrypted connect) rather than a fresh connect. Host indicates this by setting the Reconnect Bit in the Channel
Stop IE to 1. Also note that even though the host has indicated that it will remember the connection state, there
might be certain situations (e.g. system crash) which might force the host to lose this information.

Devices can follow two different approaches in this case.

The first approach is where the device ignores the host request to remember the connection state. It clears its
connection state and goes back to its default scanning state. This approach has the advantage that the device
implementation remains simple. The disadvantage is that when the host system resumes from sleep, it might
take much longer for the device to reconnect to the host and the PnP stacks will be re-built for the device.

The second approach is that the device follows the host’s request to remember the connection state, so that,
when the host resumes from sleep, it sends a re-connect to the host and the PnP stack for the device is
preserved. The device will need to send a re-connect within a TrustTimeout period after the host has restarted
the channel. In order be able to do this, the device will have to scan the current channel at least once every
TrustTimeout period. The host will make every attempt possible to restart on the same channel that it was using
at the time when it went to sleep, so that in most cases, the device is able to find the host quickly.

The device should be prepared for the infrequent case where the host loses connection state or the case where
the host never comes back. The device should scan other channels too while maintaining the connection state
for the sleeping host. The device can choose to do this with lesser frequency in order to save power. If the
device locates a host (which might be same or different than the one which went to sleep), it tries to connect to
this host. If the connection is successful, then it loses the old connection state for the sleeping host. If a
connection attempt is made but is unsuccessful, then the device might either choose to preserve the connection
state and keep looking for the sleeping host or could choose to go back to its default scanning state.

Scenario 3: Host is going to sleep and it wants only connected devices, which are enabled for wake, to
wake it up.

In this case, the host follows the remote wake mechanism as already described in the previous section. It
beacons on the channel periodically and indicates this period via the Hibernation Mode IE in its beacon. The
host indicates that it is interested in devices reconnecting to it on resume, by setting the Reconnect bit to 1 in the
Channel Stop IE in the MMCs sent before the channel is stopped.

 Wireless Universal Serial Bus Specification, Revision 1.1

 93

The device remembers the connection state for the host and uses the Hibernation Mode IE from the host to
manage its own sleep behavior. If a device does not hear from the host after some time has elapsed, it can
assume that the host is no longer present and go back to its default scanning state. If the device is enabled for
wake and if a wake event happens on the device, then it should start beaconing and include a Remote Wakeup
ASIE in its beacons. When the host wakes up, devices should reconnect to the host. A device which was not
connected at the time host went to sleep, should not attempt to wake the host or connect to it until the host
wakes up.

4.16.2.4 DNTS Scheduling
Compliant hosts shall always schedule DNTS in Master MMCs (the first of, up to three, MMCs that include
repetitions of the Master MMC IE, as described in 4.16.1.1). This provides devices with a deterministic
expectation of DNTS locations. A host may schedule DNTS after the end of the transmission of the Master
MMC. A host may also schedule DNTS in intermediate MMCs; These DNTS may be scheduled based on the
Wireless USB Revision 1.0 rules (see 4.13).

4.16.2.5 Device Battery Power Management
Most wireless USB devices will be battery-powered. When a device is running out of battery power, the device
must indicate this to the host. The device does this by sending a DN_PWR notification. The format of the
DN_PWR notification is described in 7.6.6.

Upon receiving this notification; the host will have sufficient information to manage the link properly therefore
it can avoid potential data corruption. One of the safest ways for the host to respond is to stop scheduling traffic
to the particular device, disconnect the device from it and also provide some indication to user. This allows the
user to take action to resolve this issue by charging the device, for example.

The exact moment at which a device should transmit the DN_PWR notification is implementation specific. The
device should have related thresholds preset for specific power levels. Once the device system power level
reaches one of these thresholds, the device can choose to send the DN_PWR notification. The thresholds can
also be controlled by the host system through the SetWUSBData(Power Indication Levels).

In case the DN_PWR notification does not provide sufficient information to host, the host may use the
GetStatus(Power Status) request to retrieve additions power status details from the device.

The device need not necessarily be disconnected by the host when its power drops. For example, after host
indicates to the user the low power status of a device, if user immediately begins a charging operation, the
device should stop sending the DN_PWR notification. The host will continue to monitor its DNTS for
additional DN_PWR notifications from the device after it sends the indication to the user, to decide whether to
disconnect this device or not. More precise control can be implemented by adding more interactivity between
host and device.

4.17 Dual Role Devices (DRD)
A Wireless USB Dual Role Device is an entity which supports both Wireless USB Host and Device
functionalities. Examples for specific use cases of DRD devices are as follows:

• Static DRD, e.g. Printer working as a device (e.g. with PC), or as a host (e.g. with DSC / Mobile phone),
intermittently.

• Combinational DRD, e.g. Printer working as a device (e.g. with PC) and as a host (e.g. with DSC / Mobile
phone) concurrently

• P2P DRD, e.g. Two mobile phones / MP3 players / PDAs connecting to each other, sharing files, each
displaying concurrently both Host and Device behavior towards each other.

Note that, in a way similar to wired OTG, a Dual Role Device, when operating in Host mode, may have a
limited Host functionality, i.e. restrict its support to TPL (Target Products List).

Wireless Universal Serial Bus Specification. Revision 1.1

94

Note that in case of Static DRD, a device supports only one WUSB channel concurrently, either as host or as a
device. In case of Combinational or P2P modes, DRDs are required to support two WUSB channels: one as a
host, and second as a device. Concurrent support of more than these two WUSB channels (host and device) by a
single DRD device is implementation-specific and is not specified in this standard.

IF a DRD supports Combinational and / or P2P DRD modes4, it will announce it in WUSB ASIE of type
WUSB Capability IE, as described in 7.7.7.1.

A DRD which only supports Static DRD operation shall only notify that it supports both Host and Device
modes in WUSB Capability ASIE (see 7.7.7.1).

In the “combinational” scenario, Wireless USB DRD-Host and Wireless USB DRD-Device[s] are logically
independent. They just operate as a Wireless USB host and Wireless USB device[s] respectively.

In the “point-to-point” scenario, two Wireless USB DRDs linking to each other by one upstream and one
downstream Wireless USB link, are called paired P2P-DRDs. The Wireless USB link that is established first is
called the default link; the link that is established later is called the reverse link. .

Both default link and reverse link may share the same connection context [CHID, CDID and CK] and session
context [SFC, data keys and management keys]. Therefore, P2P-DRD’s CHID on the default link may be the
same as P2P-DRD’s CDID on the reverse link. Only the DRD-Host of the default link can modify these
contexts.

A two stage establishment process is described in the following sub-sections:

 Discover a peer DRD Host to establish a link

 Host Negotiation Protocol, either to switch roles between host and device, or to establish a
combinational or P2P mode of operation.

4.17.1 Discovery of DRD Host to establish link
There are two kinds of P2P-DRD discovery processes:

 User-instructed discovery process

 Automatic discovery process without user assistance.

4.17.2 DRD User-instructed Discovery Process
When a DRD attempts to establish a link, it will be after a user has instructed it to perform some function. For
example:

 Static / Combinational DRD: A user will configure her Digital Still Camera / phone to print some files
/ pictures. The same menu in the DRD can tell the user to “make sure the printer is in “Printing from
handheld device“ mode”

o Once the user pushes the proper button in Printer, the Printer acts as either a Host (Static DRD
case), or (if connected already to a PC), as a Combination DRD device

o Once the session is over, the Printer may stop acting as a host / Combinational DRD.

 P2P DRD: A user tries to connect to mobile devices. Prior to the two mobile devices being connected,
the users of the two configure them, in an asymmetrical manner. For example, one of the GUI menus
says: “Transmit File to Peer Phone”, while the other says: “Receive File from Peer Phone”.

o Based on the GUI configuration, one of the devices acts as host, while the other – as a device.

After such user intervention, the DRD devices act as regular WUSB host / device respectively, and thus are able
to connect to each other.

 Wireless Universal Serial Bus Specification, Revision 1.1

 95

Note that the same procedure can be used both for first connection (devices are not yet associated) and for
subsequent connections, when the devices share already a Connection Context.

Note that in order to establish a connection, the devices need to be associated. Note however, that a DRD host,
unlike a generic PC-based WUSB host, is not required to support all types of association processes. The specific
association procedure to be used may be any of the procedures supported by both of DRD devices trying to
connect, and is left implementation-dependent.

4.17.3 DRD Automatic Discovery Process
In some applications user assistance for peer DRD discovery may not be possible or desired. In these
circumstances, a DRD shall be looking for a peer DRD device by switching between Host and Device modes of
operation. Assuming that the second DRD is either static (host or device mode), or is also switching modes in a
similar fashion, they will connect once they happen to be on "opposite" phases (host / device).

To avoid synchronization between the two DMDs being in the same phase, a DRD will randomly choose a
phase to be in (host / device), every “dwelling cycle”. When the two DRDs happen to be in “opposite” phases,
they will connect.

Note that such a mode of Automatic Discovery is very much application-specific. Also, minimizing time for
discovery for optimal user experience may be a significant turf for differentiation and innovation by different
vendors. Therefore, the specifics of this mode operation (e.g. "dwelling cycle" times, frequencies to scan, etc.)
are laft implementation dependent, and are not in scope of this standard.

4.17.4 DRD Host Negotiation Protocol (DRD-HNP)
Once a link has been established between two DRDs, there may be a need to modify this connection, either by
switching host / device roles (e.g. in case of Static DRD use case), or by establishing an additional WUSB
channel (e.g. in P2P DRD case). This is done by using HNP Request / Response ASIEs (see 7.7.1.16, 7.7.1.17)
sent in beacons of the DRDs.

The following Table 4-10, Table 4-11, Table 4-12, and Table 4-13 provide examples of HNP negotiations for
switching host / device roles and for switching to P2P mode, initiated by Host / Device DRD respectively.

Table 4-10: HNP Negotiation, Device / Host Role switch, initiated by Host DRD

Host Negotiation Protocol
Step

DRD A DRD B Comments

Initial state, after "default"
connection established

Acts in Host mode:
maintains WUSB channel

Acts in Device mode

Initiate HNP Request by
DRD A

Sends HNP Request IE in
beacon, requests to switch
roles between devices

Processing of HNP Request
by DRD B

Continue sending HNP
Request IE

Receives the HNP Request
from DRD A and processes
it

Send HNP Response IE by
DRD B

 Sends out HNP Response IE
in beacon, granting the
request, at least 3 times

Conclusion HNP process Receives HNP Response IE.
Stops the WUSB channel.
Discontinues the DRP
reservation used for the
WUSB channel

Wireless Universal Serial Bus Specification. Revision 1.1

96

Host Negotiation Protocol
Step

DRD A DRD B Comments

Switch to new modes Switches to device mode,
starts looking for peer DRD
MMCs.

When WUSB channel is
stopped, switches to Host
mode. Establishes a new
DRP and a new WUSB
channel on the new DRP
reservation.

Establish the new
connection

Finds MMCs from peer
DRD. Sends DN_Connect

Receives DN_Connect from
peer DRD. Establishes
connection

Table 4-11: HNP Negotiation, switch to P2P mode, initiated by Host DRD

Host Negotiation Protocol
Step

DRD A DRD B Comments

Initial state, after "default"
connection established

Acts in Host mode:
maintains WUSB channel

Acts in Device mode

Initiate HNP Request by
DRD A

Sends HNP Request IE in
beacon, requests to switch
to P2P mode

Processing of HNP Request
by DRD B

Continue sending HNP
Request IE

Receives the HNP Request
from DRD A and processes
it

Send HNP Response IE by
DRD B

 Sends out HNP Response IE
in beacon, granting the
request, at least 3 times

Conclusion HNP process Receives HNP Response IE.
Optionally – reduces the
DRP reservation used for
the WUSB channel

Switches to P2P mode:
starts operation as host and
device concurrently.

Switch to new modes Switches to P2P mode:
starts operation as host and
device concurrently.

Establishes a new DRP and
a new WUSB channel on
the new DRP reservation.

Establish the new
connection

Finds MMCs from peer
DRD. Sends DN_Connect

Receives DN_Connect from
peer DRD. Establishes
connection

Table 4-12: HNP Negotiation, Device / Host Role switch, initiated by Device DRD

Host Negotiation Protocol
Step

DRD A DRD B Comments

Initial state, after "default"
connection established

Acts in Host mode:
maintains WUSB channel

Acts in Device mode

Initiate HNP Request by
DRD A

 Sends HNP Request IE in
beacon, requests to switch
roles between devices

 Wireless Universal Serial Bus Specification, Revision 1.1

 97

Host Negotiation Protocol
Step

DRD A DRD B Comments

Processing of HNP Request
by DRD B

Receives the HNP Request
from DRD A and processes
it

Continue sending HNP
Request IE

Send HNP Response IE by
DRD B

Sends out HNP Response IE
in beacon, granting the
request, at least 3 times

Conclusion HNP process Stops the WUSB channel.
Discontinues the DRP
reservation used for the
WUSB channel

Receives HNP Response IE.

Switch to new modes Switches to device mode,
starts looking for peer DRD
MMCs.

When WUSB channel is
stopped, switches to Host
mode. Establishes a new
DRP and a new WUSB
channel on the new DRP
reservation.

Establish the new
connection

Finds MMCs from peer
DRD. Sends DN_Connect

Receives DN_Connect from
peer DRD. Establishes
connection

Table 4-13: HNP Negotiation, switch to P2P mode, initiated by Device DRD

Host Negotiation Protocol
Step

DRD A DRD B Comments

Initial state, after "default"
connection established

Acts in Host mode:
maintains WUSB channel

Acts in Device mode

Initiate HNP Request by
DRD A

 Sends HNP Request IE in
beacon, requests to switch
to P2P mode

Processing of HNP Request
by DRD B

Receives the HNP Request
from DRD A and processes
it

Continue sending HNP
Request IE

Send HNP Response IE by
DRD B

Sends out HNP Response IE
in beacon, granting the
request, at least 3 times

Conclusion HNP process Optionally – reduces the
DRP reservation used for
the WUSB channel

Receives HNP Response IE.
Switches to P2P mode:
starts operation as host and
device concurrently.

Switch to new modes Switches to P2P mode:
starts operation as host and
device concurrently.

Establishes a new DRP and
a new WUSB channel on
the new DRP reservation.

Establish the new
connection

Finds MMCs from peer
DRD. Sends DN_Connect

Receives DN_Connect from
peer DRD. Establishes
connection

Wireless Universal Serial Bus Specification. Revision 1.1

98

Chapter 5
Protocol Layer

This chapter presents a bottom-up view of the Wireless USB protocol starting at packet format definitions
inherited from the MAC Layer standard and the application-defined extension required for Wireless USB. This
is followed by a detailed description of Transaction Groups and basic transaction formats followed by detailed
Transaction Group timing requirements. The next section provides a detailed description of data bursting,
transaction level fault recovery, link-layer data flow for each transfer type and a summary of the flow-control
protocol. The last section contains PHY and MAC-specific timing and header information.

5.1 Packet Formats
Wireless USB uses the packet (Frame) formats defined in the MAC Layer standard. The general structure of a
packet is that it contains a PHY Preamble, PHY Header and MAC Header followed by a data payload (MAC
frame body) which can be transmitted at a signaling rate different than that of the PHY and MAC Header (see
top of Figure 5-1). The PHY layer provides standard support for error correction for all bits in the logical packet
(PHY/MAC Header plus frame body). The PHY also CRC checks the PHY and MAC Header. The Frame
Check Sequence field, which is the CRC value for the frame body payload is managed by the MAC layer. See
the MAC Layer standard for implementation requirements. Note that when the Security bit component of the
Frame Control field is set to zero (0), the security-related fields are not present in the packet. These fields are
TKID, Rsrvd, Encryption Offset, SFN, and MIC. These fields are present if the Security bit is set to one (1).

Section 5.6 summarizes the MAC Layer packet types (MAC Header field) used in the Wireless USB protocol.
Wireless USB uses both the secure and non-secure packet formats defined in the MAC Layer standard.

Figure 5-1. General Format of a Wireless USB Application Packet

The terminus of data communication flows on a Wireless USB device is the same as that of a wired USB
device; i.e. an Endpoint. Wireless USB addressing has three basic parts:

1. All packet transmissions (using a MAC frame type of Data Frame) during a Wireless USB DRP use
the same stream index value in the stream index field of the MAC Layer Header. The stream index

 Wireless Universal Serial Bus Specification, Revision 1.1

 99

value is allocated by the host when establishing a Wireless USB Cluster. Devices learn this value from
the Host Information IE.

2. Every device in the Wireless USB Cluster is assigned a unique device address (relative to the cluster)
during the enumeration process. The assigned device address is equivalent to the wired USB device
address. Note that the host has an effective device address which is the generated DevAddr value
necessary to conform to MAC Layer addressing requirements. Every packet transmission includes the
transmitter’s device address in the MAC Layer MAC Header SrcAddr field and the targeted devices’
device address in the MAC Layer MAC Header DestAddr field. The exception to this is the MMC
packet which uses the Broadcast Cluster ID in the DestAddr field.

Due to artifacts of the MAC Layer operation, the host may need to change its MAC Layer device address (i.e.
the value it uses in the SrcAddr field of any host-to-device or host to Cluster Broadcast Address transmission).
When devices transmit packets to the host, they must use the MAC Layer device address from the MMC’s
SrcAddr field in the device’s DestAddr field.

3. Wireless USB packets which originate or terminate on a function endpoint must include a Wireless
USB Application header (see below for details). The Wireless USB Application Header serves several
purposes one of which is to carry Endpoint Number addressing information.

In summary, the DestAddr field in the MAC Header is used by host and device MACs to determine whether
received packets should be ignored. The Stream Index and SrcAddr fields in the MAC Header are used by the
host and device to deliver received packets to the Wireless USB application (one of possibly several distinct
applications simultaneously using the radio resource). The device uses the Endpoint Number field in the
Wireless USB Application Header to deliver the data to the correct endpoint buffer. The host uses Endpoint
Number and SrcAddr field (from the MAC Header) to deliver the data to the appropriate endpoint buffer.

The Wireless USB Application Header is located immediately after the security header fields and is included in
all packets originating or terminating at an Endpoint. The format of the Wireless USB Header is detailed in
Table 5-1. The length of the Wireless USB Header is different, depending on the value of the PID field. The
shaded portion of the table indicates the fixed or common portion of the Header, which must be present,
regardless of the value of the PID field. Isochronous data phase data packets use the IDATA PID and have an
additional variable length header section following the common Wireless USB header. The additional
information for headers with the IDATA PID must contain the fields for at least one data segment as shown in
white in Table 5-3. Additional fields for additional data segments are optional and shown in grey in Table 5-3.

Table 5-1. Wireless USB Data Packet Header Format Details (rWUSBHeader)

Offset Field Size Value Description

0 bmAttributes 1 Bitmap This field has the following bit encodings:

Bits Description

3:0 Endpoint Number. Valid values are
0-15.

6:4 Packet ID (PID) (see Table 5-4)

7 Reserved/Endpoint Direction.
Value depends on PID value. If value
not explicitly defined for a PID value
then the value must be 0B. When
Endpoint Direction, the value
encodings mean (0: OUT, 1: IN).

Wireless Universal Serial Bus Specification. Revision 1.1

100

Table 5-1. Wireless USB Data Packet Header Format Details (rWUSBHeader) (cont.)

Offset Field Size Value Description

1 bmStatus 1 Bitmap This is a status byte/information byte. The field
encodings are:

Bits Description

4:0 Sequence Number. When the PID
field indicates a DATA or IDATA
packet, then this field is the data
burst sequence number. Otherwise,
this field must be set to zeros.

7:5 Flags/Handshake Code. When the
PID field has the value DATA or
IDATA this field is a set of status
flags related to the data stream.
Either the host or device may set
these flag bits. Encodings are shown
in Table 5-2.

2 Isochronous
Header

Var Record This is a variable-length header used to describe
organization of the isochronous data in the
payload. This portion of the header only exists
when PID equals IDATA.

For a data packet bits 5 and 6 of the bmStatus field indicate the requested window size. A host controller can
use this information to determine the size of the next WdtCTA slot. Devices set these bits to indicate the
maximum number of packets it can transmit during the next WdtCTA slot. The encoding of the bits is indicated
in the table below:

Table 5-2. Flags/Handshake code

bmAttributes

PID Value

Bmstatus

Bit 7

bmStatus

Bits 6:5

Meaning

00XB

(DATA,
IDATA)

0B XXB Not last packet

1B XXB Last packet flag

XB 00B Maximum bMaxBurst number or more of packets
pending for this endpoint

XB 01B Maximum bMaxBurst number of packets pending for
this endpoint.

XB 10B Maximum bMaxBurst/2 number of packets pending for
this endpoint.

XB 11B Maximum bMaxBurst/4 number of packets pending for
this endpoint

01XB XB XXB Reserved, set to 000B

100B

(HNDSHK)

0B 00B Reserved

0B 01B ACK. Endpoint observes error-free data or

 Wireless Universal Serial Bus Specification, Revision 1.1

 101

 acknowledges command in token.

0B 10B NAK. This value indicates the endpoint is not prepared
to move data (transmit or receive).

0B 11B STALL. Endpoint is halted or a control transfer request
is not supported.

1B XXB Reserved, set to 00B

101B

(DN)

0B 00B Device Notification, set to 000B

11XB XB XXB Reserved, set to 000B

Refer to Section 4.10.2 for details on the use of the bmStatus.Flags.LastPacket field.

The Isochronous packet header, when present is always concatenated to the standard Wireless USB packet
header. However, this Isochronous packet header is stored in the payload area of the packet (Figure 5-1). The
data payload for an Isochronous packet is, therefore, the maximum packet size (wOverTheAirPacketSize) less
the size of any Isochronous packet headers.

Table 5-3. Wireless USB Data Packet Header Details for Isochronous Packets

Offset Field Size Value Description

2 bNumIsoSegments 1 Number This field is present in all isochronous
data packets (PID value = IDATA). This
field indicates the number of data
segments that are contained in the data
payload of the packet. There must be at
least one data segment in an isochronous
data packet.

3 wPresentationTime 2 Number The presentation time on the Wireless
USB channel associated with Data1.
wPresentationTime has a 125
microsecond granularity. The value is
application specific, but typically
references a microframe time when the
data was intended to be delivered to the
receiver. Presentation times for
subsequent data segments are implied
based on the service interval
characteristics of the endpoint. Zero
length packets must be explicitly
described as zero length data segments.
Examples of the use of presentation time
are provided in the data flow chapter.

5 wLength1 2 Number The length of the data in data segment 1
(Data1) in bytes.

7 Data1 Var Raw
Data

The data for data segment one.

7+
wLength1

wLength2 2 Number The length of the data in data segment 2
(Data2) in bytes.

9+
wLength1

Data2 Var Raw
Data

The data for data segment two.

…

Wireless Universal Serial Bus Specification. Revision 1.1

102

Offset Field Size Value Description

Var wLengthN 2 Number The length of the data in data segment N
(DataN) in bytes.

Var+2 DataN Var Raw
Data

The data for data segment N.

Table 5-4. Wireless USB PID Types

PID Type PID Name Value Description

Data DATA 000B Data packet. Sequence numbers for packets are located
in the bmStatus field.

 IDATA 001B Isochronous data packet. Isochronous data packet
headers must use the IDATA value in the PID field which
also indicates that the Wireless USB Header includes an
additional variable length isochronous packet header field.
See Table 5-1.

Handshake HNDSHK 100B Device transmitted handshake packet. Status bit values
and data payload content are used to communicate
explicit handshake information to the host.

Notification DN 101B Device Notification

Reserved 010B-
011B
and

110B-
111B

These PID values are reserved for future use

On reception of a data packet the receiver will strip the Security, Wireless USB Headers, the Security
Checksum, and Isochronous Headers (when appropriate) before delivering the data to the appropriate
application buffer (on the host or device). Note that all checksums and decryption checks must complete
successfully before the receiver is allowed to commit any action related to the packet, including generating a
handshake, notifying an application that data is available, etc. The application payload bytes illustrated in
Figure 5-1 are the Wireless USB equivalent to the data field of a wired USB data packet. For asynchronous data
streams, the rules for sending data between a Wireless USB host and device are the same as for the wired case
(e.g. a multi-packet data request by a client application is expected to be delivered with data packet payloads of
maximum packet size until the last data payload which may be less than a maximum packet size). This allows
short-packet semantics to be used for Wireless USB data streams.

There are four basic packet types used to communicate information in the Wireless USB protocol. The use of
secure or non-secure packet encapsulation depends on the context of use unless specified otherwise. The MAC
Layer may provide a programmable AcK mechanism where each data packet can be marked by the transmitter
by a code indicating the AcK policy. The Wireless USB protocol described here exclusively utilizes a MAC
Layer no-AcK policy (e.g. no immediate MAC Layer defined AcKs used). Whenever the host is expecting any
cluster device to transmit, it must be listening at least two maximum drift times (2*tMAXDRIFT) before the
Wireless USB channel time it determines when the device should start transmitting, based on its local clock.

 The MMC (Micro-scheduled Management Command) packet (see Section 5.2). MMC packets use the
Application-defined Control Frame format defined in the MAC Layer standard. MMC packets are a
Cluster broadcast control packet, effectively addressing all devices in the Wireless USB Cluster, and
therefore do not include a Wireless USB Header (see Table 5-1). MMC packets are the management
thread for the Wireless USB Channel, so must be transmitted at the most reliable bit transfer rate (i.e.
PHY Base signaling rate). MMC packets are always transmitted using secure packet encapsulation
with the Encryption Offset field in the Security Header set to the length of the MMC payload. Note
that the host uses the Wireless USB Group Key to generate the MIC for MMC packets.

 Wireless Universal Serial Bus Specification, Revision 1.1

 103

 A protocol data packet. Protocol data packets are encoded as Data Frame in the MAC Header.
Protocol data packets can be transmitted by either a host or a device and can only be transmitted during
a WDRCTA or WDTCTA time slot (see Section 5.2.1). Protocol data packets must include the Wireless
USB Header. In addition they must be transmitted using secure packet encapsulation unless explicitly
specified otherwise. When secure packet encapsulation is present, the Encryption Offset field in the
Security Header is set to a value of 2, so that the Wireless USB Header is transmitted in plain text. The
entire body of the application payload is encrypted. Protocol data packets have the Wireless USB
Header bmAttributes.PID field set to DATA or IDATA and the bmAttributes.EndpointDirection field
must be set to 0B and should be ignored by the Receiver (see Table 5-4). The remainder of the payload
portion of a protocol data packet is application-specific data. Protocol data packets can be transmitted
at any of the implementation supported bit transfer rates.

 A protocol handshake packet. Protocol handshake packets are encoded as Data Frame in the MAC
Header. Protocol handshake packets can only be transmitted by a device and only during a WDTCTA
time slot (see Section 5.2.1). Protocol handshake packets must include the Wireless USB Header with
the bmAttributes.PID field set to HNDSHK and the bmAttributes.EndpointDirection field set to the
direction of the endpoint generating the handshake packet. In addition they must be transmitted using
secure packet encapsulation unless explicitly specified otherwise. When secure packet encapsulation is
present, the Encryption Offset field in the Security Header is set to six (6). The entire handshake
packet is transmitted in plain text but is still protected by the MIC. Protocol handshake packets are
small, however important portion of the protocol, and must be transmitted as reliably as possible, so
therefore must transmitted at the most reliable bit transfer rate (i.e. PHY Base signaling rate).

Table 5-5. Handshake Packet Format

Offset Field Size Value Description

0 rWUSBHeader 2 Record See Table 5-1. PID value = HNDSHK and the
bmStatus bits indicate the type of handshake
information.

2 bvAckCode 4 Bitmap When the handshake packet is an
acknowledgement of a data phase data burst,
this field is used to convey information about
the results of the last data burst phase to the
host. See Section 5.4 For the information that
is required to be encoded in this field.

 A device notification packet. Device notification packets are encoded as Data Frame in the MAC
Header. Device notification packets can only be transmitted by a device, during a WDNTSCTA time slot
(see Section 5.2.1). Device notification packets are transmitted using secure packet encapsulation
unless explicitly specified otherwise. Device notification packets must include the Wireless USB
Header with the bmAttributes.PID field set to DN and the bmAttributes.EndpointDirection field must
be set to 0B by the device and may be ignored by the host. Note that some device notifications are
transmitted without secure packet encapsulation because they are transmitted outside of the secure
relationship (i.e. like the Connect notification). Refer to Section 5.5.3 for details about device
notifications. The data payload portion of the packet is used to convey specific notification information
from the device to the host. When secure packet encapsulation is present, the Encryption Offset field in
the Security Header is set to the length of the Wireless USB header plus the length of the notification
payload. In short, the entire packet is transmitted in plain text in form similar to an MMC (see above).

5.2 Wireless USB Transaction Groups
This section provides a general overview of how the USB transactions are accomplished via Micro-scheduling,
defines general structure for the MMC (Micro-scheduled Management Command) and also defines the valid
information elements for an MMC.

A Wireless USB Micro-scheduled sequence is comprised of an MMC (transmitted by the host) and the
subsequent channel time which is described in the MMC. Wireless USB uses the structure of a Micro-scheduled
sequence to manage the Wireless USB transaction protocol. In general, a Micro-scheduled sequence may
include one or more Wireless USB transactions and is generally referred to in the remainder of this specification

Wireless Universal Serial Bus Specification. Revision 1.1

104

as a Transaction Group. Figure 5-2 illustrates the general format of a transaction group. Note that a transaction
group is simply a structure for running Wireless USB transactions. The host dynamically manages the contents
(size) of transaction groups over time depending on the demands of the Endpoint data streams. Therefore, the
number of transactions per-transaction group can be dynamic.

H
D

R

H
D

R

Figure 5-2. General Model of a Wireless USB Transaction Group

MMCs are used by a host to maintain and control the Wireless USB Channel. The MMC is an Application-
defined Control packet (see MAC Layer specification) and is comprised mostly of specific information
elements (IEs). The MMC layout and many of the MMC information elements are defined in the Framework
Chapter, see Section 7.5. The Channel Time Slot Allocation IEs are not in the Framework chapter, but are
included here as they are a fundamental component in describing the Wireless USB data streaming Protocol.

5.2.1 Wireless USB Channel Time Allocation Information Elements
The general form of a Wireless USB information element that describes time slot allocations is formatted as
illustrated in Figure 5-3. A host may include at most one WCTA_IE in an MMC.

 (lsb) (msb)

1 1 variable variable Variable

bLength IE Identifier =
WCTA_IE

WXCTA[0] WXCTA[1] … WXCTA[n]

Figure 5-3. General Form of a Wireless USB Channel Time Allocation IE

The bLength field value includes the total length of the Wireless USB Channel Time Allocation information
element, including the bLength field. A Wireless USB Channel Time Allocation IE is comprised of two or more
WXCTA blocks (Wireless USB Channel Time Allocation blocks). WXCTA blocks describe a time slot
allocation relative to the MMC. The general structure of a WXCTA and the relationship between its information
and the described time slot is illustrated in Figure 5-4.

Figure 5-4. Structure of a WXCTA and Relationship to a Time Slot

Start times for adjacent protocol time slots must be separated by enough channel time to accommodate sending
the information packets at the specified signaling rate, plus packet overheads (preambles, inter-packet gaps for
streaming-mode data phase) plus an inter-slot idle time (see Section 5.3 for full timing constraints).

 Wireless Universal Serial Bus Specification, Revision 1.1

 105

There are several types of Wireless USB Channel Time Allocation blocks (WXCTA) that can be used in a
Wireless USB Channel Time Allocation IE, including device receive, device transmit and device notification (a
management form of device transmit). All WXCTA blocks have a common header portion, which includes an
attribute field and the time slot information (see Table 5-6).

The types of WXCTA blocks are:

 WDRCTA (Device Receive). The targeted Function Endpoint must listen for packet transmissions
during the described time slot.

 WDTCTA (Device Transmit). The targeted Function Endpoint must transmit information during the
described time slot.

 WDNTSCTA (Device Notification Time Slot). This is a management time slot reserved for use by
Wireless USB devices to send only device notifications to the host.

Table 5-6. Wireless USB WXCTA Block Common Header

Offset Field Size Value Description

0 bmAttributes 1 Bitmap This bitmap has the following encoding:

Bit Value Description

5:0 Variable Depends on value of
WXCTA Block Type code
field

7:6 Enum WXCTA Block Type code.
Encodings are:

Value Tag

00B WDRCTA

01B WDTCTA

10B WDNTSCTA

11B Reserved

1 wStart 2 Number The units of this field are in micro-seconds. The
value is measured from the beginning of the
preamble of the MMC packet where this WXCTA
Block is transmitted.

Bits [7:6] of the bmAttributes field are the WXCTA Block Type Code. The value in this field indicates the
format of the entire WXCTA Block. The rules for how the WXCTA Block Type code affects the interpretation
of the WXCTA are provided below:

WXCTA Block Type Code Interpretation of Bits [5:0]

WDRCTA or WDTCTA Time slot allocation is for a Wireless USB transaction data packet.
Bits [3:0] are the USB device Endpoint number.

Bit [4] is dependent on WXCTA type, see below.

Bit [5] is a flag indicating that the time slot is associated with a
SETUP stage of a control transfer. When this bit is a one, then the 8
bytes immediately following the WXCTA are the SETUP Data bytes.

WDNTSCTA This time slot allocation is for a DNTS (Device Notification Time Slot).
Bits [5:0] will be set to zero by the host controller and must be
ignored by devices.

The wStart field value is always expressed in micro-seconds. Note that the wStart value is expressed as an
offset from the beginning of the MMC as a synchronization point. The host calculates the value for wStart
based on the sum of: standard PHY packet overheads, data payload size, data payload bit signaling rate and
appropriate inter-slot idle time. Section 5.3 details the rules for calculating minimum inter-slot idle times.

Wireless Universal Serial Bus Specification. Revision 1.1

106

Sections 5.2.1.1 through 5.2.1.3 describe the details of these different Wireless USB Channel Time Allocation
IEs.

Wireless USB Channel Time Allocation IEs may contain a mix of WXCTA block types. The Wireless USB host
must construct the IE so that they are ordered in time (i.e. increasing start order). In addition, the IEs must be
constructed with any WDRCTAs followed by a WDNTSCTA (if present) and then by any WDTCTAs (i.e. OUTs
followed by INs). This allows better channel utilization because it minimizes the additional overhead of
transmitter/receiver switches (bus turns). See Section 7.5 for rules for ordering IEs in MMC packets.

The following sections detail the different types of channel time allocation blocks. The shading in each of the
block format tables indicates the common header portion.

5.2.1.1 Wireless USB Device Receive WDRCTA Block
WDRCTAs (Device Receive) channel allocation blocks describe a time slot in which a device is required to
listen for data packets to the addressed OUT endpoint number.

Table 5-7. WDRCTA Block Format

Offset Field Size Value Description

0 bmAttributes 1 Bitmap This bitmap has the following encoding

Bit Value Description

3:0 Variable USB Endpoint Number

4 Zero Reserved

5 Boolean Setup Flag

7:6 WDRCTA WDRCTA block type

1 wStart 2 Number See Table 5-6

3 bDeviceID 1 Number Device Address of the Wireless USB device.

5.2.1.2 Wireless USB Device Transmit WDTCTA Block
WDTCTA (Device Transmit) channel allocation blocks describe a time slot in which a device is required to
transmit data. These time slots are used for two purposes, one is to transmit data or handshake from the
addressed IN endpoint number and the other is to transmit a handshake from the addressed OUT endpoint
number. The host must correctly annotate the WDTCTA block to disambiguate about which endpoint should
respond during the time slot.

Table 5-8. WDTCTA Block Format

Offset Field Size Value Description

 Wireless Universal Serial Bus Specification, Revision 1.1

 107

Offset Field Size Value Description

0 bmAttributes 1 Bitmap This bitmap has the following encoding:

Bit Value Description

3:0 Variable USB Endpoint
Number

4 Variable Direction. This field is
used to indicate which
device endpoint
number should
transmit during the
time slot. Encodings
are:
0 OUT Endpoint

Number should
respond with
handshake packet

1 IN Endpoint
Number should
respond with data
or handshake
packet

5 Boolean Setup Flag

7:6 WDTCTA WDTCTA block type

1 wStart 2 Number See Table 5-6

3 bDeviceID 1 Number Device Address of the Wireless USB device.

Wireless Universal Serial Bus Specification. Revision 1.1

108

Table 5-8. WDTCTA Block Format (cont.)

Offset Field Size Value Description

4 bmTXAttributes 4 Bitmap These sub-fields indicate the use parameters of
the data phase time slot:

Bit Description

14:0 Active TX Packet Size. This field
contains the maximum size of the
data payloads a device must use for
packet transmissions during the data
phase.

15 ControlStatusStageFlag. When this
field has a 1B value, the associated
protocol time slot is for a Status
Stage handshake.

20:16 PHY_TXRate. Refer to Section 5.6.

23:21 Transmit Power. The value of this
field selects the transmit power level
the device must use to transmit
data/handshake packets during the
data/handshake phase protocol time
slot.

28:24 Transaction Burst Size. This field is
used by the host to modify the
configured burst size for the current
transaction. The value in this field is
the maximum number of data
packets the device may send during
the protocol time slot. Valid values
are in the range [00000B – 10000B].
All other values are reserved.

31:29 Data Burst Preamble Policy. This
field is an encoded value used to
specify how the device must use
standard preambles between data
packets in the burst data phase. The
encoded values indicate how
standard preambles must be used in
the data burst. The first preamble is
always a standard preamble.

Value Meaning

000B Use only standard
preambles

001B Every 2nd packet

010B Every 4th packet

011B Every 8th packet

8 bvDINAck 4 Bit
Vector

Data burst acknowledgement bit vector. Refer to
Section 5.4 for detailed explanation.

The bmTXAttributes.Active TX Packet Size field is used by the host to instruct the device about what packet
payload size the device must use for data packets transmitted during the data phase protocol time slot. The
maximum value a host can put into this field is the configured wMaxPacketSize for the function endpoint. If the
host uses a value larger, the behavior is undefined. The device does not use this field for a handshake packet and
the host must set this field to a zero.

 Wireless Universal Serial Bus Specification, Revision 1.1

 109

When the bmTXAttributes.ControlStatusStageFlag field is a 1B, it signals to the device that the current Control
transfer on the endpoint is transitioning to the Status Stage. The device must transmit a handshake packet during
the assigned protocol time slot. The bmAttributes.Direction field must be set to a 1B by the host and the device
must ignore the bmAttributes.Direction field.

The bmTXAttributes.PHY_TXRate field specifies the bit signaling rate the device must use for the data payload
portion of packets sent during the associated time slot. This transmit rate only applies to this time slot. The host
may change the value of this field at any time. The host must only use values in this field which the device has
explicitly noted that it supports. The host must set this field to 00000B when the WDTCTA is used for a
handshake packet.

The bmTXAttributes.Transmit Power field is used to specify the transmit power level the device must use to
transmit all of the data/handshake packets during the associated data/handshake phase protocol time slot. In
general, a value of zero (0) selects the highest power setting and a value of seven (7) selects the lowest. Refer to
Section 4.10.34.10.1 for details.

The host sets the value of bmTXAttributes.Transaction Burst Size to reflect the number of data packets it is
prepared to receive during the allocated protocol time slot. The device must transmit the requested number of
data packets in the burst if the associated data is available. The device must not transmit more data packets than
the requested burst size during the allocated protocol time slot. If the host uses a value in this field which is
larger than the configured Maximum Burst Size for the function endpoint, the resulting behavior is undefined.

The bmTXAttributes.Data Burst Preamble Policy field is used by the host to instruct the device how to use
streaming and standard preambles during the next DATA IN phase data burst. The encoded value is a power-of-
two step function of how frequently the device must insert standard preambles between the data packets of the
burst. Note that the physical layer bursting rules require that a data burst must always begin with a standard
preamble. The host must set this field to 000B when this WDTCTA is used for a handshake packet. The host
must set this field to a value of 000B when PHY_TXRate is 200 Mb/s or below (see reference [4]). If the host
uses this feature on a function endpoint where it is not supported, the results are undefined.

The bvDINAck field is the handshake to a DATA IN burst. It is a bit vector where each bit location corresponds
to a data sequence value (bvDINAck[0] corresponds to sequence value 0, bvDINAck[1] to sequence value 1, and
so on). Refer to Section 5.4 for a full description of the data burst sequence rules. For a WDTCTA targeted at an
OUT endpoint, the device does not use this field and the host must set this field to a zero.

5.2.1.3 Wireless USB Device Notification WDNTSCTA Block
DNTS time slots are allocated by the host to allow individual devices to send small, asynchronous notification
messages to the host. The host notifies devices in its Wireless USB cluster of a DNTS by including a
WDNTSCTA block in an MMC. The format of a WDNTSCTA block is illustrated in Table 5-9. A host may include
at most one WDNTSCTA block in a WCTA_IE.

Device Notification Time Slots are logically structured as a window of uniform sized message slots. Message
slots in a DNTS are large enough for a device to transmit a maximum sized device notification, plus a mimimun
inter-frame space (MIFS), plus a guard-band to allow for local device clock drift. The WDNTSCTA describing a
DNTS instance includes the number of message slots in the instance.

Figure 5-5. Generic model for Organization of a DNTS

Wireless Universal Serial Bus Specification. Revision 1.1

110

The access mechanism for devices to transmit during a DNTS is Slotted Aloha. A device that has a device
notification to transmit selects a message slot in a DNTS using a uniformly distributed random integer value, in
the range {0, N-1} where N is the number of message slots in the DNTS instance. A device will begin
transmitting the device notification packet at the point it determines the start of the message slot, measured from
the beginning of the previous MMC packet, based on its local clock. Individual time slots within a DNTS have
a fixed duration of tNOTIFICATIONSLOT. A WDNTS must be scheduled to occur within 25ms of its associated MMC
packet.

Table 5-9. WDNTSCTA Block Format

Offset Field Size Value Description

0 bmAttributes 1 Bitmap This bitmap has the following encoding:

Bit Value Description

3:0 Zero Reserved

4 Zero Reserved

5 Zero Reserved

7:6 WDNTSCTA WDNTSCTA block
type

1 wStart 2 Number See Table 5-6

3 bNumslots 1 Number The value in this field is the raw number of
notification message time slots available in the
DNTS.

5.3 Transaction Group Timing Constraints
The host must order individual transactions within transaction groups to minimize the number of ‘bus turns’
(e.g. turning the hosts’ radio from Transmit to Receive or Receive to Transmit). This means that a transaction
group must be constructed to have all the host Transmit protocol time slots immediately after the MMC,
followed by a ‘bus turn’ and then all Device Transmit protocol time slots. Note there is another ‘bus turn’
between the last Device Transmit time slot and the next scheduled MMC packet (see Figure 5-6).

Figure 5-6. Example Wireless USB Transaction Group Organization

 Wireless Universal Serial Bus Specification, Revision 1.1

 111

An inter-slot time is the time between the end of the last packet transmission of one protocol time slot to the
start of the next protocol time slot (or transmission of an MMC packet). In general, the intent of the inter-slot
time is to ensure that transmissions between protocol time slots do not overlap. Inter-slot times must be long
enough in duration to guard against the maximum clock drift between a device’s local clock and the ideal clock,
see Figure 5-7 (which also provides general the method for calculating a guard time (tGUARDTIME).)

Figure 5-7. TDMA Slot Guard Time Reference

Note that the ppm (parts per million) term depends on the clock rate of the PHY and the maximum drift is a
function of the elapsed time since the last synchronization event (i.e. the interval). In order to minimize the
effects of Guard Time on the available bandwidth, Wireless USB uses MMCs as clock synchronization
reference points.

The following discussion applies to determining the minimum timing constraints for allowable inter-slot time.
Inter-slot times are, as noted above, a timing component used only by the host to calculate individual time slot
durations. Actual inter-slot times are host-implementation dependent, but must meet the minimum requirements
described below.

The first two protocol time slots in Figure 5-6 indicate OUT (host to device) transmissions. Protocol time slots
in a transaction group must be ordered OUT then INs, so the host is the transmitter of all the packets beginning
from an MMC until the first IN protocol time slot. This looks in many respects like a burst transfer (supported
in many PHY standards), although the recipient devices in adjacent protocol slots may be different for this
application. For adjacent OUT protocol time slots, the minimum inter-slot time must be tINTERSLOTTIME . There is
no need to add guard times between these consecutive OUT transactions (or between the MMC and the first
OUT,) since the host is the transmitter of all these packets. The receiving device, however, must start listening
at least a calculated guard time (tGUARDTIME) before the anticipated packet start time. The Wireless USB standard
inter-slot time (tINTERSLOTTIME) is a PHY-related timing parameter, see Table 5-12.

During device to host (IN) transactions, the minimum inter-slot time between successive IN transactions must
be tINTERSLOTTIME plus tGUARDTIME since the IN time slots could potentially be used by different transmitters with
drifting clocks.

When an MMC or OUT protocol time slot is followed by an IN protocol time slot, or an IN protocol time slot is
followed by an MMC, then the minimum inter-slot time must be equal to the calculated guard time (tGUARDTIME)
plus the host’s bus switch time (tBUSTURNTIME) which is a PHY-related timing parameter, see Table 5-12. The sum
of these is the bus turn inter-slot time (tBUSTURNINTERSLOTTIME). Figure 5-6 illustrates these inter-slot idle times.

The final components in calculating protocol slot time durations are the inter-packet gaps and size of preambles
between packets in slots where multiple packets are transmitted (e.g. burst-mode packet transmissions). PHY
standards may (or may not) define a minimum and maximum value for burst-mode inter-packet gaps and the
use of streaming preambles (which can be shorter than standard preambles). When necessary, Wireless USB
does define a maximum requirement for the streaming mode inter-packet gaps, see Table 5-12. The availability
of streaming preambles is also a PHY-specific parameter. Section 5.3.1 summarizes the streaming-mode timing
constraints for the PHY. These rules and parameters allow a host implementation to calculate protocol slot time
durations with only the transmit rate, number and size of the data packets as variables in the calculation, all
other slot time terms are constants.

Figure 5-8 summarizes component parts the host takes into consideration when calculating the durations of data
phase time slots when the burst-mode size is greater than one. Regardless of the direction of transmit (OUT or
IN), the first packet in a protocol time slot is required to have a standard preamble. Between each data packet is

Wireless Universal Serial Bus Specification. Revision 1.1

112

an allowance for a streaming-mode inter-packet gap (tSTREAMIPG) and either a streaming-mode or standard
preamble. At the end of the time slot is an allowance for the inter-slot idle time (see above discussion around
Figure 5-6).

t S
T

R
E

A
M

IP
G

t S
T

R
E

A
M

IP
G

t S
T

R
E

A
M

IP
G

t S
T

R
E

A
M

IP
G

Figure 5-8. Example Wireless USB Burst Data Phase Time Slot Layout

Figure 5-8 also illustrates the timing constraints for protocol time slots immediately following an MMC packet.
When the protocol time slot following an MMC is an OUT the MMC and the first data packet in the OUT time
slot must be separate by tINTERSLOTTIME. When the protocol time slot following an MMC is an IN, the MMC and
the first data packet being transmitted by the device must be separated by tBUSTURNINTERSLOTTIME.

5.3.1 Streaming-Mode Inter-packet Constraints for the PHY
The PHY standard defines a strict set of rules for implementing streaming-mode data transmissions. A summary
of the rules are repeated below. The final standard authority on differences between this specification and the
PHY standard is the PHY standard.

The first data packet in a Wireless USB data burst (i.e. multi-data packet data phase) must always use a standard
(length) preamble. All packets in a Wireless USB data burst must be separated by tSTREAMIPG. For data rates of
200Mb/s and lower, all data packets of the burst must use a standard preamble. For data rates greater than
200Mb/s, the host may use streaming mode preambles for OUT data phase bursts and will instruct via the
bmTXAttributes.Data Burst Preamble Policy WDTCTA parameter the pattern of streaming and standard
preambles to use for the device’s burst transmission during the associated protocol time slot.

5.3.2 Protocol Synchronization
All Wireless USB Protocol timings are specified relative to the beginning of the preamble for the MMC
packets. Figure 5-9 illustrates Wireless USB protocol synchronization and relative reference points.

Figure 5-9. Protocol Timing Relative to MMC

Devices reset their protocol clocks to zero at the beginning of an MMC preamble. All channel time offsets
(nextMMC and WXCTA time slot allocations) in the MMC are specified by the host relative to the start of the
preamble for the current MMC.

A device may idle its radio after the MMC packet and the Start Time for time slots it is designated to be either a
Transmitter or Receiver. When designated as a Transmitter, the device (or host) must begin transmitting its

 Wireless Universal Serial Bus Specification, Revision 1.1

 113

preamble at the point it determines the start of the time slot (or MMC), measured from the beginning of the last
MMC packet, based on its local clock. When designated as a Receiver, the device (or host) must begin listening
at least a calculated guard time (tGUARDTIME) before the point it determines the start of the time slot, based on its
local clock (see Figure 5-9).

It is the responsibility of the host to ensure allocated time slots are large enough to accommodate the data
communications intended to occur during the time slot. Wireless USB devices must preserve the integrity of
allocated time slots. For IN protocol time slots, this means that the device must not transmit before its local
clock indicates the start of its time slot. For OUT protocol time slots, the device may turn off its receiver when
its local clock indicates the adjacent protocol slot start time (unless the adjacent slot time is for a different
endpoint on the same device). Devices derive the slot boundaries from the WCTA_IE information in the IE.
The WXCTAs must always be provided in order, which means the device can derive the slot boundaries based
on its WXCTA’s wStart field and the wStart field of the next (adjacent) WXCTA. This means that the host must
always provide an ‘end of list’ WXCTA in an MMC, which always provides a termination of WXCTA.wStart
fields for ‘real’ endpoint transaction. The ‘end of list’ WXCTA must be the last WXCTA block in a WCTA_IE.
The ‘end of list’ WXCTA block must not be interpreted as a WXCTA for use with a valid Function Endpoint. To
ensure this, the ‘end of list’ WXCTA block has the field values specified in Table 5-10.

In the case were the last WXCTA before the EOL WXCTA is a WDRCTA then the nextMMC time must be at
least a calculated guard time (tGUARDTIME) larger than the wStart value of the EOL WXCTA. In the case of a
WDTCTA before the EOL WXCTA, the nextMMC time must be at least tBUSTURNTIME + tGUARDTIME larger than the
wStart value of the EOL WXCTA. Note that larger in this context must accommodate appropriately for channel
time rollover conditions.

Table 5-10. Required End of List WXCTA Block Values

Field Sub-Field Value

bmAttributes USB Endpoint Number 0000B

Reserved/Direction 0B

Setup Flag 0B

WXCTA Block Type 00B

wStart N/A Set to appropriate value for context of use.

bDeviceID N/A Broadcast Cluster ID

5.4 Data Burst Synchronization and Retry
Wireless USB provides a mechanism to guarantee data sequence synchronization between the data transmitter
and the data receiver across multiple transactions with data bursts of different sizes. This mechanism provides
for identifying required data order, guarantees that handshake information is interpreted correctly by transmitter
and receiver and guarantees advancement of the data stream only after reliable data delivery has been
accomplished.

Data bursting as defined here provides a mechanism for reliable delivery of data between a Transmitter and a
Receiver. The Transmitter may transmit more than one data packet per data phase and the Receiver must
provide information during the handshake phase acknowledging that data was received. The method for
annotating the required packet sequence and acknowledgement mechanism provides a structure for efficient
retransmission of lost data burst packets (i.e. only lost packets are retransmitted). This means that, from the
Receiver’s point of view, data packets will at times, appear to arrive ‘out of order’. Packets transmitted during a
data phase time slot usually have a PID field value of DATA (or IDATA). Note that a device is allowed to
respond to a WDTCTA “token” with a single Handshake packet. A device is not allowed to mix DATA (or
IDATA) and Handshake packets in the same data phase. The Wireless USB Header in a data packet has a
Sequence Number field (see Table 5-1) which is used as data sequence counter. This counter and the rules
described below allow the Receiver to reconstruct the order intended by the Transmitter. The data sequencing
mechanism defined below uses a relatively small range of sequence values, which allows for a small footprint
overhead per data packet while providing a reasonable degree of bursting capability even in the face of errors
and retries.

Wireless Universal Serial Bus Specification. Revision 1.1

114

Wireless USB data bursting uses a simple sliding window protocol that provides support for reliable data
delivery. The sliding window protocol ensures that a transmitter always uses data sequence numbers in strict
ascending sequence order, so a receiver can use received data packets using the same ordering rules, thus
preserving the packet ordering intended by the transmitter. Figure 5-10 illustrates the general data flow model
for wireless USB data bursting.

Figure 5-10. General Data Burst Data Sequencing Rules

The Transmitter has a data stream that is logically segmented into Maximum Packet sized portions (DX through
DX+Y). It also maintains a sliding transmit window that controls how sequence numbers are associated with each
data packet for the next transaction data phase. The Transmitter must associate sequence numbers with data
buffer segments in strict, ascending sequence number order.

The Receiver maintains a receive window that identifies which data sequence numbers (and by association
which data packets) it will retain for use from the next transaction. It also provides burst acknowledgment
information during the handshake phase of the transaction. The Receiver must use data received in strict
ascending sequence number order (except in Isochronous discard cases).

Each device endpoint has attributes to support data bursting. A device endpoint reports its bursting attributes via
information in the Wireless USB Endpoint Companion Descriptor (see Section 7.4.4). The bursting attributes of
each endpoint include the following:

 Maximum Packet Size – This is nominal data unit size for all data packets.

 Maximum Burst Size – This is the largest number of packets an endpoint can accommodate in a single
data phase. A device must provide enough buffering to accept at least Maximum Packet Size *
Maximum Burst Size bytes. A device may provide more buffering for better performance.

 Maximum Sequence – This is the range of sequence numbers that must be used when transferring data
to this endpoint. The N value in Figure 5-10 is the Maximum Sequence value. The actual range of
sequence numbers for the endpoint is zero to (Maximum Sequence – 1).

In addition to these attributes, each function endpoint uses the following parameter for data bursting control.

 Maximum Sequence Distance – This is the range of current transmit/receive window that can be
maintained by the transmitter/receiver. This indicates the maximum difference between the smallest
sequence counter value and the largest value of the window including both values. The Maximum
Sequence Distance value is the Maximum Sequence value minus one. The Maximum Sequence
Distance must never be exceeded.

If the transmitter sends a packet with a sequence number that is outside of the current receive window, the
receiver must ignore the packet. At any point in time, transmit and receive windows are never larger than the
Maximum Burst Size. Transmit and receive windows will occasionally be different in size, for example when
the transmitter has less than Maximum Burst Size number of data packets to send. The general rules of the
transmitter and receiver to maintain transmit and receive windows are:

 Wireless Universal Serial Bus Specification, Revision 1.1

 115

 When a configuration event occurs (SetConfiguration, SetInterface, ClearEndPointFeature), transmit
and receive data sequences are reset to start at zero (0), the transmit window is initialized to send up to
the Maximum Burst Size number of data packets for the next transaction and the receive window is
initialized to receive up to the Maximum Burst Size number of data packets. Note that the actual size
of the transmit window for any transaction depends on two factors: the actual amount of pending
transmit data and or the size of the receive window (whichever is smaller).

 During the Data Stage of a transaction, the transmitter will transmit all of the data packets in the
transmit window. The receiver will advance the receive window one location for every packet it
successfully receives. The advancement of the receive window must always be modulo Maximum
Sequence Size.

 During the Handshake Phase, the receiver provides a burst acknowledgement. Note that when the
transaction is an OUT transfer, the burst acknowledgement is in the data payload of a Handshake
Packet. When an IN transaction, the burst acknowledgement is in a subsequent MMC (WDTCTA
information element). The burst acknowledgement value is the current receive window value,
formatted as a bit-mask. The burst acknowledgement is a bit vector representation of the receive
window. The ‘1’ bits in the bit vector represent the receive window.

The transmitter must use the burst acknowledgement data value to advance its transmit window, in
preparation for the next transaction data phase. If the transmitter does not correctly receive an
acknowledgement, it does not advance its transmit window. There are some exceptions for isochronous
discard scenarios.

Figure 5-11 illustrates the generic model of data bursting for a Wireless USB transaction with some randomly
selected endpoint bursting attributes. The model demonstrated below works regardless of a function endpoint’s
attribute values. The endpoint attributes for this example are a Maximum Burst Size of four (4) and a Maximum
Sequence value of 10. Based on the rules above, the sequence value range used for the data bursting stream is
[0-9]. On the left-hand side of the figure is the initial condition for transmit and receive windows. The shaded
slots are part of the current ‘window’, and each window is initialized with burst size number of slots. During the
data phase, the Transmitter sends only the packets in the current transmit window. As the Receiver lands data
packets during the Data Phase of the transaction, it advances the receive window for each successfully received
packet (based on the observed sequence number). In the Handshake phase of the transaction, the receiver
provides a bit vector which is the current receive window. This bit vector directly indicates which sequence
numbers the Transmitter is allowed to use in the next transaction.

Figure 5-11. Example Sliding Window Tracking (Burst Size = 4; Max Sequence = 10)

The example in Figure 5-12 demonstrates sliding window sequence through an entire pass through all of the
sequence numbers of the example endpoint. Note that by the end of the Transaction 1, the transmit window
spans the last two sequence numbers and the first two sequence numbers. This example shows that any number
for the Maximum Sequence that meets the minimum requirements (>= 2 X Maximum Burst Size) will result in
acceptable bursting behavior with regards to proper sequencing.

Wireless Universal Serial Bus Specification. Revision 1.1

116

Figure 5-12. Example Sliding Window, Full Rotation (Modulo Max Sequence)

The example in Figure 5-13 demonstrates sliding window sequence through a scenario where packets are lost
during the data phase, and subsequent retries and recovery.

Figure 5-13. Example Sliding Window, Smashed Packets & Recovery

In transaction 0, data packets with sequence counter values 1 and 2 are not correctly received. The Receiver
advances the receive window for the sequence numbers it does see, but also retains the window over the packets
it has not yet seen. The resultant window mask is returned to the Transmitter as the burst acknowledgement
value during the handshake phase of the transaction. The Transmitter takes the burst acknowledgement and
updates its transmit window to match the receiver window. It then retransmits the lost data packets (with the
same sequence numbers) and then transmits new data packets for the new portion of the transmit window. The
Transmitter will issue retry packets before transmitting new data packets.

The example in Figure 5-14 demonstrates sliding window sequence through a scenario where the Handshake
Phase encounters some corruption and the burst acknowledgement does not make it back to the transmitter.

 Wireless Universal Serial Bus Specification, Revision 1.1

 117

Figure 5-14. Example Sliding Window, Smashed Handshake

During transaction 0, the receiver successfully lands all of the data packets, updates its receive window and
sends the burst acknowledgement information in the handshake phase. The handshake information does not
reach the Transmitter, so it does not advance the transmit window. There is a protocol rule that a transfer cannot
be advanced to the next transaction until the handshake has been received by the Transmitter. In the case of an
OUT (host to device transaction) where the handshake packet gets lost, the host must retry the Handshake phase
ONLY, until it receives a good handshake before advancing to the next full transaction. In the case of an IN
(device to host) the handshake information is included in the MMC with the token for the next transaction. By
inference if the device receives the token for the next transaction without error, it has received the handshake
information for the previous transaction without error.

The example in Figure 5-15 demonstrates sliding window sequence through a scenario where the Receiver’s
application layer does not consume data from the bus layer at a rate that allows the system to burst a full burst
size (because buffering is not available at the bus layer). In Figure 5-15, the gray stripe around the receive
window represents occupied data packet buffers that are not available to receive new data packets from the
Transmitter.

Figure 5-15. Example Sliding Window, Flow Control Scenario

In transaction N, the Receiver’s buffers are partially occupied, so in the burst acknowledgement, it tells the
Transmitter that it can only receive two packets (D8 and D9, respectively). In transaction N+1, the transmitter
sends D8 and D9, which fills all of the available buffering on the endpoint, so the burst acknowledgement value
indicates that the Receiver has no buffering available. This is a flow control event. When the data direction is an
OUT (host to device), the host will interpret the burst acknowledgement of all zeros as a flow control event and
remove the endpoint from the actively scheduled endpoints. Refer to Section 5.5.4 for details on flow control.

Wireless Universal Serial Bus Specification. Revision 1.1

118

The example in Figure 5-16 demonstrates sliding window sequence through a scenario where a packet keeps
getting lost during the data phase, and the receiver cannot advance the window beyond the Maximum Sequence
Distance. In this example, the Maximum Sequence Distance value is 9, which is the Maximum Sequence value
10 minus one.

Figure 5-16. Example Sliding Window, Smashed Packets & Maximum Sequence Distance Limit

The sequence distance is defined as the difference between the smallest sequence counter value and the largest
value in the current sequence. In the initial condition, the sequence distance is 4, as the smallest value is 0 and
the largest value is 3. In Figure 5-16 the outside shadow illustrates the tracking of the sequence distance. In
transaction 0, the data packet with sequence counter values 0 is not correctly received. The Receiver advances
the receive window and sends a handshake packet (071H). The resultant sequence distance is 7 (0 to 6). In
transaction 1, the data packet with sequence counter value 0 is retransmitted with some new data packets, but it
gets lost again. The Receiver updates the receive window, however it cannot advance the receive window up to
the sequence counter value 9 because it would increase the receive sequence range to 10, which exceeds the
Maximum Sequence Distance 9. Therefore, the Receiver advances the receive window so the sequence distance
is 9 and sends a handshake packet of (181H), which results in the Transmitter advancing its transmit window to
match.

The maximum sequence distance rule allows the burst protocol to work through a ‘stuck-at’ sequence wrap
scenario without additional in-stream flags. The example in Figure 5-17 illustrates a continuation of the
example stuck-at condition that pushes the burst sequence up to the edge of the maximum sequence distance
(started in Figure 5-16).

 Wireless Universal Serial Bus Specification, Revision 1.1

 119

Transmit
Window

Receive
Window

Data Packets w/
Seq. Numbers:

D7, D8

Burst
acknowlegement
Bit Vector (0x001)

0 1

2

3

4
56

7

8

9

0
1

2

3

4
56

7

8

9

0
1

2

3

4
56

7

8

9

Transmit
Window

Receive
Window

Data Packet w/
Seq. Number:

D0

Burst
acknowlegement
Bit Vector (0x207)

0
1

2

3

4
56

7

8

9

0 1

2

3

4
56

7

8

9
0 1

2

3

4
56

7

8

9

0
1

2

3

4
56

7

8

9

0 1

2

3

4
56

7

8

9

0
1

2

3

4
56

7

8

9

0
1

2

3

4
56

7

8

9

Transmit
Window

Receive
Window

Data Packets w/
Seq. Numbers:
D9, D0, D1, D2

Burst
acknowlegement
Bit Vector (0x078)

0 1

2

3

4
56

7

8

9

0 1

2

3

4
56

7

8

9

0 1

2

3

4
56

7

8

9

0 1

2

3

4
56

7

8

9

Figure 5-17. Example Recovery from Stuck-at Wrap Condition

In transaction 2, the Transmitter sends a data burst including D0, D7 and D8. Again, D0 is lost which results in
the Receiver recording the correctly received packets, but cannot advance its window (again) due to the D0
being stuck. So the Receiver returns a handshake indicating it is (still) ready for D0 (001H). At this point the
transmit and receive windows are only one packet wide. In transaction 3, the Transmitter sends the single data
packet with sequence number 0, which is successfully received by the Receiver. The Receiver is able to
consume the received data virtually immediately (making the packet buffer free for another packet) which
allows the device to finally shrink the sequence distance to zero. This in turn, allows the Receiver to finally
advance the receive window to the maximum burst size and return a handshake of (207H). Note, that this
particular response is a best-case scenario. Many implementations would not consume data that quickly and free
up the receive buffers that quickly (between the end of the data phase and getting ready to transmit the
handshake phase). Therefore, a common response in this situation will be a burst acknowledgement of 200H.
The transmitter observes that the Receiver has advanced the receive window and can now advance the transmit
window accordingly and send all new data in Transaction 4, including re-using sequence value 0 in back-to-
back transactions, with no ambiguity whether the data associated with 0 is old or new.

5.5 Wireless USB Transactions
All transfer types in Wireless USB use the same basic transaction format. This format has all of the necessary
components to provide for reliable delivery of data by providing means of error detection and retry. As noted in
Section 4.4 Wireless USB transaction are split transactions mapped over a TDMA-based structure. Transactions
are nominally three phase (Token, Data, Handshake); However under certain flow control and halt (stall)
conditions; there may be only two phases to a transaction. MMC and Handshake packets must be transmitted at
base rate. Data phase data packets may be transmitted at any supported bit transfer rate.

Wireless Universal Serial Bus Specification. Revision 1.1

120

WDTCTA

DATA
(Seq# N)

DATA
(Seq# N+1)

...
DATA

(Seq# N+Y)

HNDSK
NAK or
STALL

MMC

bvDINAck

HDR

WDTCTAMMC HDR

Device Host

Data not Ready, or Internal Error

Number of packets in
data phase depends on
Transaction Burst Size
or available data.
The Sequence
number is always
derived (N+1) modulo
MaxSequence.

Smashed MMC

WDRCTA

DATA
(Seq# N)

DATA
(Seq# N+1)

...
DATA

(Seq# N+Y)

HNDSK
ACK (bvAckCode)
or NAK or STALL

HDR

Smashed MMC

WDTCTA

Idle

Idle

IN OUT

Idle

Direction = IN = 1
bvDINAck
PHY_TXRate

Direction = OUT = 0

Figure 5-18. General Wireless USB Transaction Format

When a host is ready to receive data, it issues an MMC with a WDTCTA block describing the channel time
protocol time slot for the data phase of the transaction. If the function endpoint successfully receives the MMC,
updates its transmit window based on the value of bvDINAck bit vector field in the WDTCTA block and then
responds, (beginning at the start of the assigned protocol time slot) by transmitting either a burst of data packets
(one or more), or should it be unable to respond with data, it returns a Handshake packet encoded with a NAK
or STALL handshake code. The function endpoint transmits the data packets at the bit transmission rate
encoded in the WDTCTA block by the host. If the function endpoint detects an error in the MMC it will not
respond to the host at the protocol time slot. During the data phase protocol time slot, the host listens for data
packets from the function endpoint. It observes the sequence numbers of received data packets and advances its
receive window accordingly. The acknowledgement of which data packets the host received without error is
communicated to the function endpoint in the bvDINAck bit vector field in next WDTCTA block addressed to the
function endpoint.

Binding the acknowledgement information into the next token for the function endpoint saves channel time and
protocol overhead and works well while the pipe is streaming data. However, at the end of a transfer (from the
host perspective, all buffers provided by the application are full) the function will not receive any
acknowledgement until the application provides more buffering and the host resumes transactions. In some
cases this may be a long time and is significantly different sequencing requirements from USB 2.0. In order to
simplify function implementations, the host has additional operational requirement to get an acknowledgement
to the function endpoint as quickly as possible. For a Bulk IN function endpoint, when the host detects that it
has no more data buffer, it must schedule at least three blank WDTCTA for the function endpoint in subsequent
transaction groups. For an Interrupt or Isochronous function endpoint, the host must schedule a blank WDTCTA
as the last ‘transaction’ in the service period after it has successfully received packets in the previous transaction
and advanced its receive window. A blank WDTCTA is one that allocates no channel time with the wStart field
in this CTA set to same value as that in the next WXCTA in this CTA IE. It serves only to acknowledge the
packets received in the previous data phase.

When a host is ready to transmit data to a function endpoint, it transmits an MMC with two WXCTA blocks
which describe the protocol time slots required to complete the data and handshake phases of the Data OUT

 Wireless Universal Serial Bus Specification, Revision 1.1

 121

transaction. The host uses a WDRCTA block to describe the protocol time slot for the data phase and a WDTCTA
block (with the Direction field set to OUT (0), indicating the OUT function endpoint must respond with a
handshake packet) to describe the protocol time slot for the handshake phase. The function endpoint ignores the
value of the bvDINAck field when the Direction field is set to OUT (0). Note if there is insufficient time in the
current reservation to complete both the data and handshake stages of the transaction, the host may transmit the
handshake stage WDTCTA block in a later MMC. During the data phase protocol time slot, the host will
transmit a burst of data packets, based on the state of the host’s transmit window (see Section 5.4). If the
function endpoint detects an error in the MMC it will not respond to the host at the handshake protocol time
slot. Otherwise, the function endpoint will transmit a handshake packet at the handshake phase protocol time
slot (described by the WDTCTA block). The function endpoint will set the Handshake Code to one of the
following values:

ACK is used to communicate the function endpoint’s receive window state to the host. The receive window
state is encoded into the handshake packet’s bvAckCode field. See Section 5.4 for how ACK and the value of
bvAckCode are interpreted by the host. Note that one or more (up to all) of the data packets transmitted during
the data phase protocol time slot may be corrupted when received by the function endpoint. The function
endpoint must respond with a handshake packet during the handshake protocol time slot to provide the host the
current receive window state. This information allows the host to know which packets need to be retransmitted.

NAK indicates that the function endpoint did not accept any data transmitted by the host during the data stage
protocol time slot. This is nominally a flow control response indicating that the function was in a temporary
condition preventing it from accepting any of the data (e.g. buffer full). The host will resend the data to the
function endpoint at a later time, which depends on the transfer type of the function endpoint, see Section 5.5.4.

STALL is used by Bulk and Interrupt function endpoints to indicate that the endpoint is halted and the host
must not attempt to retry the transmission because there is an error condition on the function.

When the host does not successfully receive the Handshake packet, the host must retry the Handshake packet
(only) before retrying the data phase of the transaction.

Note: a device must not respond to a WXCTA that has a valid device address, but invalid endpoint number.
Examples of this include: transactions addressing endpoints before the device is configured and transactions
addressing endpoints not defined in the current active configuration.

The host sends zero-length Data OUT transfers by including a blank WDRCTA in the MMC. A blank WDRCTA
is a WDRCTA with no channel time allocation with the wStart field in this CTA set to the same value as that in
the next WXCTA in this CTA IE. The receiving device behaves as if an actual zero-length transfer has occurred
by advancing its receive window to acknowledge seeing the next sequence number in the transfer. The host will
schedule a subsequent WDTCTA for the device acknowledgement. No such optimization can be made for Data
IN transfers. Devices must send a Data packet with a zero-length data payload.

5.5.1 Isochronous Transactions
Wireless USB Isochronous transactions follow the same basic format and structure as described in Section 5.5,
with a few extensions to support the Isochronous data streaming model described in detail in Section 4.11.

Wireless Universal Serial Bus Specification. Revision 1.1

122

WDTCTA

IDATA
(Seq# N)

IsoHeader

IDATA
(Seq# N+1)
IsoHeader

...
IDATA

(Seq# N+Y)
IsoHeader

HNDSK NAK

MMC

bvDINAck

HDR

WDTCTAMMC HDR

Device Host

Data not Ready, or Internal ErrorSmashed MMC

WDRCTA

IDATA
(Seq# N)

IsoHeader

IDATA
(Seq# N+1)
IsoHeader

...
IDATA

(Seq# N+Y)
IsoHeader

HNDSK
ACK (bvAckCode)
or NAK

HDR

Smashed MMC

WDTCTA

Idle

Idle

IN OUT

Idle

Direction = IN = 1
bvDINAck
PHY_TXRate

Direction = OUT = 0

Figure 5-19. Isochronous Wireless USB Transaction Format

There are two structural differences in the data phase between the general transaction format (Figure 5-18) and
the Isochronous transaction format (Figure 5-19). Data packets transmitted during the data phase of an
isochronous transaction must use the isochronous version of the Wireless USB Header. The PID field must
have the value of IDATA and must include the additional isochronous data header fields shown in Table 5-3.

5.5.2 Control Transfers
Control transfers in USB 2.0 are comprised of two or three stages of transactions that begin with a SETUP
transaction followed by an optional set of transactions for a data stage and the transfer completes with a
transaction for a status stage. Wireless USB preserves the same three-stage concept and semantics for control
transfers, but introduces some optimizations to make control transfers easier for devices to implement and more
efficient within the micro-scheduling transaction format.

The optimization is that the SETUP stage is not a separate OUT transaction. Rather, the Setup command bytes
are transmitted in an MMC and are associated with the WXCTA block that describes the transaction for the next
stage of the control transfer. This is fully compatible with the USB 2.0 rule that a device must always accept a
SETUP transaction (i.e. cannot NAK). This protocol is simpler because it has removed the opportunity to
respond directly to a SETUP transaction. Another optimization is that the Status stage of the control transfer is
always encoded as an IN transaction where the function control endpoint must respond with a handshake
packet. The final optimization simplifies the data sequencing rules for transactions in the data stage. The start of
a control transfer resets the data bursting state on the host and Function endpoint to the default initial state. For
a control IN transfer, it means the hosts receive window is initialized to receive packets and this is
communicated to the function endpoint in the data stage WDTCTA block via the bvDINAck field. For a control
OUT transfer, the setup stage resets the function endpoint’s receive window to its initial condition which the
host assumes in order to begin transmitting packets for the first transaction in the data stage.

 Wireless Universal Serial Bus Specification, Revision 1.1

 123

Figure 5-20. Setup Transactions with Data Stage

To start a control read transfer, the host will transmit an MMC with a WDTCTA block describing the channel
protocol time slot for the first IN transaction in the data phase of the transfer. The host sets the Setup Flag to a
1B in the WDTCTA block to indicate that the eight control request bytes are appended to the channel time
description block. It also initializes the bvDINAck bit vector to the initial condition of its receive window. If the
function control endpoint successfully receives the MMC, it resets its endpoint burst sequence numbers to zero
and sets its transmit window based on the value of bvDINAck bit vector field in the WDTCTA block. If the
function endpoint has the data requested in setup command ready when the data phase protocol time slot arrives
then it will then respond with a data burst, as directed by the WDTCTA block, or should it be unable to respond
with data, it returns a Handshake packet encoded with a NAK or STALL handshake code.

To start a control write transfer, the host will transmit an MMC with the same WXCTA blocks as required for
any OUT transaction (see Section 5.5). The host sets the Setup Flag to a 1B in the WDRCTA block as above for
the control IN transfer and appends the eight control request bytes to the WDRCTA block. During the protocol
time slot, the host will transmit a burst of data packets. As with any OUT transaction, the function endpoint will
transmit a handshake packet at the handshake phase protocol time slot. Section 5.5 describes the Handshake
Codes and conditions for each handshake code for an OUT transaction.

In keeping with the USB 2.0 semantics, a STALL handshake has the same effect on Wireless USB Control
endpoints. Notably, a function endpoint will return a STALL handshake code if it cannot decode the request
setup data. The host will not halt the pipe in response to a STALL handshake.

Figure 5-21. Setup w/No Data Stage & Bare Status Stage

Wireless Universal Serial Bus Specification. Revision 1.1

124

To complete a control transfer, the host will transmit an MMC with a WDTCTA block with the Control Status
Flag and Direction fields set to a 1B. These settings tell the function control endpoint that the transaction is a
status stage transaction for a control transfer. It must transmit a Handshake packet during the protocol time slot.
The device must set the rWUSBHeader.Endpoint Direction field to a 1B for a handshake packet transmitted
during the status stage of a control transfer. The Handshake code set by the function control endpoint is set to
the following:

NAK indicates that the function has not completed the action requested in the setup data bytes.

ACK indicates the control transfer is complete (and possibly the action requested in the setup data bytes is also
complete).

STALL indicates that the function has an error that prevents it from completing the command.

Note, for a control read, the host may use the bvDINAck field of the status stage WDTCTA to deliver the
acknowledgement to last data transaction in the data stage.

To start a control transfer that does not have a data stage, the host will transmit an MMC with a WDTCTA block
where both the Setup Flag field as well as the Control Status Flag field set to a 1B. The device should transmit
a status stage handshake packet as defined above.

If a device has different behavior between the case were a control write is retried and the case were the host
sends the same control write a second time, it must first NAK the combined setup and status stage. After this it
can complete the control transfer by returning an ACK handshake when the host sends a WdtCTA with the
Setup Flag field set to 0b and the Control Status Flag field set to 1B.

E.g. a Wireless USB device has a vendor-specific interface where the host can ask to turn the device physically
by 90 degrees. In this case the device must be able to see the difference between a retry and a second request.
Because if the host wants the device to turn 180 degrees, the host will send the same request two times in a row.

The behavior to send a NAK after a control write with no data stage is required when the device is not able to
see the difference between a retry and a second request, but is allowed in all other cases. In the case there is no
difference of behavior on the device, it is allowed to return an ACK immediately.

5.5.3 Device Notifications
Device Notifications are small messages transmitted by a device during a DNTS window, see Section 5.2.1.3
for details on requirements for transmitting the actual message packet. The individual device notification
packets are not immediately acknowledged by the host. However it is necessary that device notifications be
delivered reliably to the host, which generally means that hosts are required to acknowledge device notifications
and devices need to track response and retransmit device notifications as necessary. Figure 5-22 illustrates the
general model used in this specification for reliable delivery of device notifications. This general model is used
as the base building block for all device notification communications. This discussion is intended to be a
reference model that meets required behavior. It is not intended to require implementation of the documented
states.

 Wireless Universal Serial Bus Specification, Revision 1.1

 125

Figure 5-22. General Device Perspective Model for Device Notification Transfers

The Sending Notification state is entered by the device (device context) when a system event (desire to connect
to a host, endpoints ready, etc.) occurs that requires a device notification transmission. The device remains in
this state, sending the specific Notification to the host until it receives the appropriate (for the Notification type)
host response. The frequency of Notification retransmits depend on the type of the Notification and either the
specification or implementation policies.

The particular response varies by notification message. For example, some notifications require
acknowledgement via information elements in the MMC and some simply require transaction activity to the
device. Refer to the detailed descriptions of the individual Device Notifications in Section 7.6 for details on
required responses.

5.5.4 Flow Control
USB 2.0 has flow control built into the low-level protocol. The wired protocol requires the host to poll for a
change in status once a flow control (NAK) response has been given by the device. USB host controller
implementations poll aggressively (often) for a change in data stream readiness. This ‘busy-wait’ polling is
extremely expensive in terms of occupying available bandwidth in the wireless environment; therefore,
Wireless USB utilizes a less bandwidth consuming method for resuming a data stream after a flow-control
event. Note that as with USB 2.0, the initial state of all endpoints after any configuration event is that they are
assumed to be in the ‘ready’ state.

A device may respond with a flow control response to any token request. An IN Endpoint will return a
handshake packet (NAK) instead of a data packet during the protocol time slot. An OUT Endpoint always
returns a handshake packet to acknowledge the data packet(s) received during the data stage protocol time slot.
There are two fields of particular interest in the OUT handshake packet, the Handshake Code and the
bvAckCode. Table 5-11 summarizes the Endpoint responses and the appropriate interpretation.

Wireless Universal Serial Bus Specification. Revision 1.1

126

Table 5-11. Flow control Event Summary

Host Device Response Description

IN DATA(X) If not end of transfer, host will
advance transfer state and begin
another transaction when
appropriate.

IN bmStatus.Handshake Code = NAK Flow control response

OUT DATA(X) bmStatus.Handshake Code = ACK
bvAckCode ≠ 0

More data OK

OUT DATA(X) bmStatus.Handshake Code = ACK
bvAckCode = 0

Flow control response. Device
accepted all data transmitted
during the data phase time slot,
but does not have room for more.

OUT DATA(X) bmStatus.Handshake Code = NAK Flow control response.
Device did not accept any data
transmitted during the data phase.
Note, bvAckCode must be a zero.

When a host receives a flow control response from a function endpoint, it will remove the endpoint data stream
from the current active list of endpoints being serviced. In other words, the host should stop polling the function
endpoint when it gives a flow control response.

When a Control, Bulk or Notification Interrupt device endpoint is ready to resume the data stream (meaning it
has data or space of one or more maximum packet sizes available), the device must send an Endpoints Ready
notification message to the host during a DNTS, see Section 7.6.3.

Endpoints Ready notifications must match the encryption mechanism of the associated endpoint. For example,
if a device flow controls a control transfer that is not using secure packet encapsulation, the associated
Endpoints Ready notification for that endpoint must be transmitted without secure packet encapsulation. A
device must not mix unencrypted endpoints with encrypted endpoints in the same Endpoints Ready notification.

A device must not use an Endpoints Ready notification for Isochronous or Periodic Interrupt Endpoints. The
host will resume transaction traffic to endpoints of these transfer types at the next scheduled service interval.
Note that when the host is to resume transactions with an OUT periodic function endpoint at the next service
interval (after a flow control event), it does not have any specific information about how much buffering is
available on the function endpoint. Therefore, the host will schedule a WDTCTA requesting a handshake packet.
In response, the function endpoint provides a handshake packet, which contains the bvAckCode field, indicating
to the host how much buffering is available for the next transaction. For Isochronous IN endpoints, the host may
schedule a burst of size up to the configured maximum burst size of the function endpoint, or schedule a single
data packet, and use information in its header as indication for how many data packets are available for the next
burst.

A host may at any time request the device to return its buffer availability by scheduling a WDTCTA after an
OUT function endpoint returns a flow control response. If the function endpoint does not have any buffer space
available for at least one data packet, then it must respond with the same handshake value it used for the
previous flow control response. If it does have buffer space available, then it must return an ACK handshake
packet with a non-zero bvAckCode indicating the current buffering availability.

5.6 Physical and Media-Access Layer Specific Characteristics
Table 5-12. Wireless USB Protocol Timing Parameters

Parameter Symbol MAC/PHY Equiv. Value Units

Standard Preamble tSTDPREAMBLE PLCP Std
Preamble

9.375 µs

 Wireless Universal Serial Bus Specification, Revision 1.1

 127

Parameter Symbol MAC/PHY Equiv. Value Units

Streaming Preamble tSTREAMPREAMBLE PLCP Burst
Preamble

5.625 µs

Maximum interval between
MMC packets in a Wireless
USB channel

tMAXMMCINTERVAL N/A 65 ms

Maximum Clock Drift tMAXDRIFT N/A 1.3107 Note 2 µs

Duration of time slot for a
maximum sized notification
message.

tNOTIFICATIONSLOT N/A 26 µs

Streaming Inter packet Gap tSTREAMIPG MIFS nominal µs

Calculated guard time tGUARDTIME N/A (2 * MaxDrift)
1 µs (d ≤ 25ms)
2 µs
 (25ms d ≤ 50ms)
3 µs (d > 50ms) Note 1

µs

Minimum Inter-slot time
(successive OUT slots)

tINTERSLOTTIME MIFS MIFS µs

Minimum transceiver turn
time

tBUSTURNTIME SIFS SIFS µs

Minimum Inter-slot time (bus
turn)

tBUSTURNINTERSLOTTIME SIFS + tGUARDTIME tBUSTURNTIME + tGUARDTIME µs

Note 1 ‘d’ is the time between the start of the MMC and the start time for the current packet that must be received.
Note 2 calculated based on 20ppm and a maximum interval of 65535 µs.

Table 5-13. Wireless USB Channel Parameters

Parameter Description Value Units

TrustTimeout The time, measured from the reception
of a successfully authenticated packet,
after which a device or host must force a
re-authentication before resumption of
normal “trusted” data communications

4 Seconds

MaxMasterMMCsperSF The maximum number of Master MMC
periods allowed in any superframe

16 n/a

Wireless Universal Serial Bus Specification. Revision 1.1

128

Table 5-14. UWB PHY Related Parameters

Symbol Description Value Units

PHY_TXRate This parameter describes the bit transfer rates supported by the
PHY. It is specified as a five-bit field with the following encodings:

Value Meaning (Mb/s)

00000B 53.3

00001B 80

00010B 106.7

00011B 160

00100B 200

00101B 320

00110B 400

00111B 480

01000B
–
11111B

Reserved

n/a n/a

Channel
Number

The channel number encoding maps to a specific band group, TF
Code. See reference [4] for details. For this revision of this
specification, only channel numbers for band group one are
required.

Channel
Number Range (Band Group, TF Code)

0 – 8 Reserved

9 – 15 (1, 1 – 7)

17 – 23 (2, 1 – 7)

25 – 31 (3, 1 – 7)

33 – 39 (4, 1 – 7)

45 – 46 (5, 5 – 6)

n/a n/a

SIFS Short Interframe Spacing. Maximum TX to RX or RX to TX
turnaround time allowed.

10 µs

MIFS Minimum Interframe Spacing. Specifically, the minimum time
between successively transmitted packets. For burst-mode
transfers, this is the exact required time between successive
packet transmissions.

1.875 µs

PHY Base
Signaling Rate

The Base Rate or PHY Base Signaling rate is lowest common
denominator transmit bit rate defined by the PHY or MAC Layer.
The PHY [4] standard defines 53.3 as the base signaling rate.

53.3 Mb/s

 Wireless Universal Serial Bus Specification, Revision 1.1

 129

Table 5-15. MAC Layer Header Field Settings for Wireless USB Protocol Time Slot Packets

Frame Control DestAddr SrcAddr Sequence
Control

Access
Information

Bits Name Value

2:0 Version 000B

3 Secure [1] (0 | 1)

5:4 ACK Policy 00B

8:6 Frame Type 011B [2]

12:9 Delivery ID
[3]

1XXXB

13 Retry 0B

15:14 Reserved 0B

Host to Device 0000H [4] C000H [5]

Device
Address

Host
DevAddr

Device to Host

Host
DevAddr

Device
Address

[1] Value of the Secure field depends on the Device State, see Section 7 for details.
[2] The value of Frame Type for protocol time slots is Data Frame.
[3] For packet transmissions during protocol time slots, this field (XXX) contains the stream index value assigned
by the host to the Wireless USB Channel.
[4] Wireless USB does not use this field, so devices and the host must set this field to the constant value of
0000H.
[5] The MAC Layer requires data packets transmitted during a Private reservation to have the More Frames bit
set to a one (1B).

Table 5-16. MAC Layer Header Field Settings for Wireless USB MMC Packets

Frame Control DestAddr SrcAddr Sequence
Control

Access
Information

Bits Name Value

2:0 Version 000B

3 Secure [1] 1

5:4 ACK Policy 00B

8:6 Frame Type 001B [2]

12:9 Frame
Subtype [3]

1110B

13 Retry 0B

15:14 Reserved 0B

Host to Device 0000H 8000H

Broadcast
Cluster
DevAddr

Host
DevAddr

[1] See Section 7.5 for rules for using secure packets on MMCs.
[2] The value of Frame Type for MMC packets is Control Frame.
[3] When the Frame Type is Control Frame, then this field indicates the Frame Subtype, which is Application-
specific Control Frame.

Wireless Universal Serial Bus Specification. Revision 1.1

130

Chapter 6
Wireless USB Security

6.1 Introduction
This chapter provides Wireless USB security-related information. It describes the security inherent in wired
USB (USB 2.0). This inherent security establishes the baseline for Wireless USB security. This chapter also
describes the architecture, protocols, mechanisms, and USB framework extensions needed to meet this baseline.

When considering security solutions, one must keep in mind that no solution is currently or can be proven to be
impervious. Security systems are designed not to explicitly stop the attacker, but rather to make the cost of a
successful attack far higher than any gain the attacker might realize from the attack. For the sake of brevity,
when we say that a particular solution prevents attacks, we mean that the solution meets the objective listed
above. The solution is not impervious, but the cost of compromising the solution outweighs the gain to be
realized.

6.1.1 Goal of USB Security
Wireless implementations of USB are wire-replacement technologies. The wire actually provides two services
typically associated with security. It connects the nodes the owner/user specifically wants connected. It also
protects all data in transit from casual observation or malicious modification by external agents. The goal of
USB Security is to provide this same level of user-confidence for wirelessly connected USB devices.

Cable Ends define user’s
connection choice

Cable protects data
 in-transit

Figure 6-1: Security provided by USB Cable

6.1.2 Security and USB
The USB core specification does not currently support a notion of security. Applications are free to build
security on top of USB, but the USB core specification itself does not currently provide any level of security. A
Wireless USB implementation built on the UWB radio requires some level of security. The owner/user’s data
must be kept private and protected. Likewise, the owner/user’s equipment must be protected from unauthorized
connections from potentially hostile agents.

Rather than fill this need specifically for a UWB connection, this chapter defines a base-level security
architecture for USB in general. Defining the security architecture in general USB terms allows for common
USB security managers on the host, regardless of the underlying media that the USB protocol is bound to.
Security operations are handled via the USB control channel, allowing this specification to remain media
independent.

6.2 Overview

6.2.1 Base of Trust
Any security architecture must begin with a base of trust. A “secure relationship” implies that A) there is a
reason for the group to exist, i.e. some common goal, and B) there is some requirement that is used to restrict

 Wireless Universal Serial Bus Specification, Revision 1.1

 131

membership to the group. The members of the group “trust” each other because of ‘B’ in order to accomplish
‘A’. An architecture that stops short of defining ‘A’ or ‘B’ is not useful because it only assumes an already
functioning relationship. It does not address how the relationship is created in the first place. In common
computing jargon, A and B are needed to ‘bootstrap’ the relationship.

If we examine the function of the USB cable in regards of its ability to establish secure relationships between
host and device, we find that A) the purpose of the relationship is to transfer data, and B) membership to the
group is restricted to only the nodes that the owner/user has chosen by connecting via the wire. If Wireless
USB is a wire-replacement, then clearly Wireless USB Security must provide the same function. Therefore,
USB Security defines “Ownership” as the base of trust for USB security. Trust always begins with the
user/owner and is propagated to the devices by the owner/user. The USB Security architecture is designed to
propagate trust from the user to the user’s equipment. The individual nodes can then demonstrate this trust to
each other in order to establish the relationships the owner wants.

Different security architectures have different bases of trust that may or may not be applicable to USB. Items
that are specifically not applicable are:

 Device/Host characteristics such as manufacturer, model number, firmware revisions.
 External third parties such a Certificate Authorities or Clearinghouses
 Class/Type of device

If a client application requires any of these items for establishing trust, that application can define an
application-specific security, implemented on top of the core USB stack.

6.2.2 Preserve the Nature of the USB Device Model
USB Security cannot be allowed to affect the fundamental nature of the USB device model. Implementation
must not add significant cost or complexity to a device. It must provide a path for device implementation solely
in hardware as USB does not currently require a device to have a processor. If cost or complexity must be
introduced, they should be confined to the host.

USB Security must preserve the basic asymmetric communications model of USB. Communications are
always, with the exception of signal-replacement messages (connect, disconnect, etc) initiated by the host. This
holds true for the security architecture as well. Security operations are always initiated and driven by the host.

The connection policies of USB Security must provide for symmetric authentication between host and device.
That is, the device must be given the opportunity to validate the host as the host is given to validate the device.
It is just as important to insure that the owner’s device connect to the right host as it is to insure that the owner’s
host connect to the right device. This is especially important as some usage models may have two owners
involved, the owner of the host and a separate owner of the device.

6.2.3 Implementation of Security Extensions
USB already provides a “device control plane” via the USB framework. This framework was created for
performing enumeration and control operations and as such is the ideal method of implementing security
operations. Descriptors, Features, and Requests are all used to create the USB Security Framework.

USB Security requests always target the device as the request recipient. USB Security is device-wide and does
not make a distinction between endpoints, just as the cable does not.

USB Descriptors are used to enumerate the security capabilities of a device to a host. The device always
describes its capabilities to the host. The host then chooses the device capabilities to use. This simplifies
device construction and is in keeping with the USB device model.

Descriptors are used to wrap common security objects such as encryption keys. This allows common key
exchange mechanisms to be used regardless of key or encryption type.

USB features are defined to represent security-related control elements present in devices. The USB framework
is used to manipulate these features in the standard USB manner.

USB Requests are defined for the security-related command elements. These requests are used for key
management, challenge-response verification, and encryption control.

Wireless Universal Serial Bus Specification. Revision 1.1

132

6.2.4 Encryption Methods
The standard method of encryption for Wireless USB 1.1 is the same as Wireless USB 1.0, and is based on
AES-128 Counter with CBC-MAC (CCM). This is a symmetric encryption algorithm that uses the AES block
cipher to create a robust stream cipher that can be used to provide integrity, encryption, or both. It is capable of
real-time operation when implemented in hardware. This is the only method currently defined for general
session encryption.

Wireless USB also supports public key encryption, but only for authentication. Devices may choose to start a
first-tie authentication with public key encryption. In this case, PK encryption is used to authenticate the device
and to protect the distribution of the initial CCM key. When PK is used, it will be used in a manner that will
allow for software implementation of the algorithms.

The CCM encryption suite provides 128 bits of security for run-time operation. The PK cryptography suite
must provide the same level of strength or else the strength of the entire suite is compromised. For this reason,
Wireless USB will use RSA with 3072 bit keys for encryption and SHA-256 for hashing.

The Security Architecture also recognizes a wired connection as an encryption method. This allows the SME to
recognize a wired connection as a secure connection, without resorting to additional cryptography. This allows
for wired/wireless devices, where the wired connection can be used for initial CCM Connection Key
distribution.

6.2.5 Message Format
Encryption will generally cause the message length to grow. In addition to the original message, the encrypted
message must now contain additional keying material, freshness values, and an integrity value. The message
format for encrypted frames follows the standard WiMedia MAC secure frame format, which includes security
header, secure payload and a message integrity check-sum.

6.2.6 Encryption Keys
This section describes the various keys identified for USB Security. In general, the keys fall into two classes of
keys, master keys and session keys.

6.2.6.1 Master Keys
Master keys refer to keys that are generally long-lived. Master keys are typically used as the shared secret for
authentication. They are also used to derive or protect distribution of session keys

6.2.6.1.1 PK Association Key
The information in this section has been superseded by the association models supplement.

6.2.6.1.2 Symmetric Association Key
The information in this section has been superseded by the association models supplement.

6.2.6.1.3 Connection Key
The Connection key (CK) is the primary key used for establishing connections (see 6.2.10 below for details
regarding the connection model). This key is created by the host and distributed to the device, along with a
corresponding CHID and a CDID at the time of first connection or using an out-of-band method. The key is a
128-bit key. The host should update this key periodically as this will only increase security robustness. The
host is expressly forbidden from distributing one CK to multiple devices, unless the CK is the Diagnostic CK
and the key is being distributed for diagnostic purposes. Each device must be given a unique CK. Wireless
USB uses the CK for authentication and for derivation of the initial session key, the PTK. Possession of a CK
and the CHID/CDID pair implies that the possessor has the owner’s trust, allowing the host and device to
connect or reconnect without owner intervention.

 Wireless Universal Serial Bus Specification, Revision 1.1

 133

6.2.6.2 Session Keys
Session keys are short-lived keys, typically used for operational encryption and decryption. These keys are
created when a connection is established and discarded when the connection ends.

6.2.6.2.1 Pair-wise Temporal Key (PTK)
PTKs are the “working” keys for USB data encryption. These keys are derived during a 4 way handshake. The
host maintains a separate PTK for every device connected. The host uses this key to encrypt all data packets
sent to the corresponding device and to decrypt all packets received from the device.

The device uses this key to decrypt all data packets received from the host and to encrypt all packets sent to the
host.

6.2.6.2.2 Group Temporal Key (GTK)
The GTK is a specialized temporary key that is shared by all members of the current USB cluster. It allows the
host to send secured messages in a broadcast manner, such as an MMC. These messages are not encrypted, but
they are secured using the GTK. Devices that have the GTK can verify the authenticity by verifying the MIC
attached to the message. Devices may not use the GTK for encryption. Only the host can transmit messages
secured with the GTK.

6.2.6.2.3 Names for Session Keys
The underlying MAC layer uses names for both PTKs and GTKs. This name is referred to as the Temporal
Key ID (TKID) and is present in every secured packet sent between host and device. The TKID identifes the
key used to encrypt the secured packet. The host is responsible for creating TKID values and supplying these to
devices at the time of key derivation or key distribution.

6.2.6.2.4 Key Confirmation Key
The Key Confirmation Key (KCK) is a short-lived key used for message integrity during authentication. It is a
128-bit key, derived and used during authentication. It is discarded upon completion of authentication.

6.2.7 Correct key determination
Each encrypted message will have a TKID in the unencrypted security header portion of the message. This
TKID tells the device which key to use when decrypting the message.

6.2.8 Replay Prevention
The PTK and GTK both require a replay prevention mechanism to satisfy CCM requirements. This mechanism
uses 3 components, a Secure Frame Counter (SFC), a Secure Frame Number (SFN) and a replay counter (RC).
The host and Device each maintain a separate SFC for each session key they use to encrypt transmitted packets.
They also maintain a separate RC for each session key they use to decrypt received packets. The counters are
initialized to zero when a new key is installed. The SFN is a latched image of the SFC used to encrypt the
packet. This image is included in the encrypted packet.

When a packet is encrypted for transmission, the transmitter first increments the SFC associated with the
encryption key. The transmitter then copies the incremented SFC value to the SFN field of the message and
encrypts the message. If retries are required, the message is re-encrypted before the retrying. Each successive
retry will have a SFN value greater than the last attempt.

When a packet is received, the receiver compares packet SFN value with the value of the RC associated with
the decryption key. If the SFN value is less than or equal to the value of RC, then the packet is declared to be a
replay of a previous packet and is discarded. If the value of SFN is greater than the value of RC, the receiver
will set RC to be equal to the SFN of the received packet. In an actual implementation, RC should only be
updated after the packet has passed FCS validation and all security checks.

Wireless Universal Serial Bus Specification. Revision 1.1

134

6.2.9 Secure Packet Reception
The processing of received secure packets is as follows:

 Validate FCS – this step is performed prior to validating security elements.

 Validate the received frame has the correct secure frame settings as per MAC Layer rules.

 Validate the MIC for the received frame.

 Check for replay attacks.

 Update RC only if the previous checks have all passed.

Received packets that fail security checks are discarded. The receiver should record the fact that an error
occurred.

6.2.10 General Connection Model
The intent of the Wireless USB connection model is to mimic the wired connection model as closely as
possible. Wireless devices will have to be “installed” on a computer just as wired USB devices do. This
section presents an overview of the connection model without dwelling on the security-related portions of the
process. For these examples, in order to provide clarity to the overall connection model, we assume that
security is effectively disabled.

6.2.10.1 Connection Context
In order to make secure relationships consistent across multiple connections, some amount of context must be
maintained by both device and host. For the case of Wireless USB, this context consists of three pieces of
information, a unique host ID (CHID), a unique device ID (CDID), and a symmetric key(CK) that is shared by
both parties. The symmetric key is referred to in this document as the connection key. This key is used to re-
establish the connection at a later date. This key is always unique. The host never gives the same connection
key to multiple devices. The host also stores the EUI-48 of the device along with the connection context for
device identification purposes. All Wireless USB 1.1 devices are required to support a unique EUI-48.

Table 6-1: Elements of a Connection Context

Name Size Description

Connection Host ID
(CHID)

128 bits Unique Host ID. The device can use this ID to locate the
host.

Connection Device ID
(CDID)

128 bits Unique Device ID. This ID uniquely identifies the device to
the host specified by CHID. It is not guaranteed to be
unique across multiple hosts.

Connection Key (CK) 128 bits The key to be used to establish connections using this
context. This key should be changed on a regular basis,
preferably on every use.

A Connection Context (CC) must contain non-zero CHID and CDID values to be useable by the device. A host
can use a CC with a value of zero in either field to revoke an existing context. When loading a context for
connection purposes, if a device discovers a CC that contains CHID or CDID values of zero, it shall treat that
CC as if it were entirely blank. The device shall make no use of the other fields.

Devices may find ways to add value by supporting multiple CCs. Each CC supported by the device must
contain a unique CHID. In the case a device supports multiple CCs, only the CC used to connect to the host
shall be made accessible to that host. If the device supports multiple CCs and establishes a first-time
connection, the device shall make a blank CC accessible to the host for the purposes of allowing the host to
establish an initial CC on that device.

Devices that only support a single CC shall always overwrite the current CC with a newly received CC.

Devices shall only accept CCs via secure channels. A device will only accept a CC delivered via a secure USB
pipe or an out-of-band channel.

 Wireless Universal Serial Bus Specification, Revision 1.1

 135

6.2.10.2 Connection Lifetime
The security of any given connection is based on the temporal keys being used to secure that connection.
Wireless USB temporal keys have a lifetime of 248 messages, based on the size of the replay counters. In
addition, if the host loses communications with the device for TrustTimeout or more, the host must assume the
device’s temporal key has been compromised. At a minimum, a 4-way handshake is required to refresh the
temporal keys before the regular traffic is resumed. When a device loses communications with the host for
TrustTimeout or more, it must send a reconnect device notification to inform the host that the device wishes to
resume operation, re-authenticate the host, and generate new temporal keys. A device that experiences a
TrustTimeout shall only accept requests to its default endpoint until trust is reestablished. During this period,
the device shall NAK requests to other endpoints.

6.2.10.3 New Connection
When a new connection is made, the device’s connection context is assumed to be blank. The host may already
have several contexts representing other devices already installed. It will create a new context for devices
being installed for a first time.

This new context may be transferred to the device in one of two ways: either through an out-of-band (OOB)
channel, or via secured USB commands. Devices that receive a CC via an OOB method do not make new
connections. Since they are given CCs before attempting to connect, they follow the connection logic described
below in 6.2.10.4.

A device with no valid CC will have a zero CDID value. Since a CDID is required for connection, the device
must manufacture a temporary CDID value to use for this first-time connection request. The CDID value is
needed to allow the host to differentiate between multiple requesting devices at the same unconnected device
address. A device shall create this temporary CDID value from a cryptographic random number source. This
requirement does not apply to devices that receive CCs via OOB methods.

Upon user initiation of a new connection, the device will seek a host advertising for new connections. When
the device locates such a host, it will initiate the connection request with the host.

When the host receives the device request for a connection, it creates a new context for the device. This context
consists of CHID, CDID, and CK. This context is transferred to the device using the Framework.

A device shall generate a new CDID value for every user invocation of a new connection. Once a device has
created a temporary CDID, it shall retain the CDID until it receives a new CDID as part of a CC from its host or
the current connection attempt fails.

Because the temporary CDID is a random number, there is a very small chance that two devices will attempt to
make a new connection to the same host using the same CDID. This also means that there is a very small
chance that the host will connect to the wrong device. The protocols used for establishing connections between
host and device contain protections against this and will fail to connect. This error-checking combined with the
requirement that a device create a new temporary CDID after a failure provides the means for recovering from
this error.

6.2.10.4 Connection
A device may make a connection with any host that it has a connection context for. To make a connection, the
device first has to locate the host advertisement for the known host. This is done by locating a host broadcasting
a CHID that matches a Connection Context CHID known by the device. Once located, the device makes a
connection request, supplying the corresponding Connection Context CDID.

The host, upon receiving the connection request uses CDID to locate the corresponding context for the device.
If a context is found, the host completes the connection by issuing a Connect Acknowledge to the device. As
part of the Connect Acknowledge, the host will also move the device to a unique un-authenticated device
address.

At this point, both host and device perform mutual authentication and key derivation using a 4-way handshake
and the CK. Upon successful completion of the 4-way handshake, the host will enable the device for operation.

Wireless Universal Serial Bus Specification. Revision 1.1

136

6.2.10.5 Reconnection
When a device loses communications with the host for a period of time greater than TrustTimeout, it must
inform the host that it no longer trusts the security of the connection. It does this by sending a connect request
to the host, specifying its CDID and its previous device address. This request informs the host that the device
wishes to re-authenticate the connection without losing its current device state and configuration. The host may
choose to either allow the device to reconnect while retaining device state or it may process the request as a
connect request, instructing the device to reset any remembered state.

6.2.10.6 Revocation
When we make provisions for creating secure relationships, we must also make provisions for deleting them.
Revocation of a connection by either party can be accomplished by deleting the unique host ID from the device
or by deleting the unique device ID from the host. The host can delete the context via framework commands.
How the device deletes a context without host intervention is outside the scope of this document, however, the
device should provide the user with an ability to return to “factory default settings”. This action should delete
any contexts currently held by the device.

6.2.10.7 One-time Connections
In some use cases, hosts will not wish to establish permanent connections. Some use cases will want to
establish a one-time connection where a CC is delivered to the device to allow a connection to occur, but the
CC is not retained for future connections. The host can accomplish this by delivering a CC to the device, then
revoking the CC immediately after the 4-way handshake is completed.

6.2.10.8 Diagnostic Support
Support for diagnostic equipment is important for the success of a new technology. Wireless USB recognizes
this need and accommodates it by leaving the common trigger elements in clear-text in transmitted messages.
These components are still authenticated by the integrity value. Only the data payload portion of Wireless USB
transactions will be encrypted. Device Notifications are authenticated only and contain no encrypted data.

Specific security-defeat mechanisms will not be added to provide diagnostic access to encrypted payloads. .
These types of mechanism tend to be more useful to the attacker than the developer. What is really required is a
way to provide the diagnostic tool with the keys used by the host and device. This will typically be done on a
channel other than Wireless USB, so this specification will not define the mechanism to be used. Instead, this
chapter offers three suggestions of dealing with encryption when using diagnostic tools.

 Test in unauthenticated mode. This mode supports a limited subset of framework requests and test modes
that can be used to test basic operation

 Make the “Connection Key” available to the diagnostic software. If a 4-way handshake sequence is
captured, then the diagnostic tool has all the material needed to perform the same key derivation logic as
the host and device did. To aid in this, this specification defines the CK value of 0 to be the Wireless USB
Diagnostic Connection Key.

 Provide a means of moving the current temporal keys from the host to the diagnostic device.

6.2.10.9 Mutual Authentication
As noted in the introduction, authentication must be symmetrical between the host and device. USB Security
accomplishes this by using a 4-way handshake that allows the host and device to prove to each other they hold
matching CKs. The 4-way handshake also allows both parties to derive initial session keys from the CK
without directly using the CK to encrypt transmitted messages.

6.2.10.9.1 4-Way Handshake
The 4-way handshake combines mutual authentication and temporal key distribution into a single 4-message
protocol. Temporal keys are derived in a manner that does not expose the CK, thereby eliminating the need for
a unique nonce for every use of the CK.

 Wireless Universal Serial Bus Specification, Revision 1.1

 137

The host initiates the 4-way handshake by sending a TKID and a 128 random nonce HNonce to the device. The
device also creates a random nonce DNonce. The device then provides its DevAddr, the host’s DevAddr, and the
two nonces to a key generation function. This key generation function derives an initial session data key. The
key generation function also derives the Key Confirmation Key (KCK), which is used during authentication and
then discarded.

The host initiates Phase 2 of the 4-way handshake by asking the device for DNonce. The device returns the
TKID and DNonce. It also adds a third item to the returned data. It uses KCK to compute a message integrity
code (MIC) over the entire packet payload. The format of the packet payload is described in Table 7-22.

When the host receives the DNonce message, it can also derive the initial session data key. After deriving the
key, it validates the MIC received from the device by performing the same MIC computation with KCK. If the
MICs do not match, the host halts further processing and silently disconnects the device.

At the end of Phase 2, the host and device have both derived initial session keys and the host has proof that the
device holds the correct CK. Phase 3 is used to provide proof to the device that the host also holds the correct
CK and to instruct the device to install the derived key. The host initiates Phase 3 by constructing a message
containing the TKID, HNonce, and a MIC computed over the entire packet payload with KCK. It sends this
message to the device. The device validates the received MIC by also performing the MIC computation. If the
MICs do not match, the device silently disconnects. If the MICs match, the device installs the derived session
key. The host is allowed to install the derived session key after successful completion of Phase 2, but must be
prepared to remove it if Phase 4 does not complete successfully.

Phase 4 of the 4-way handshake is used to tell the host that the device has successfully installed the session
keys. Wireless USB devices perform phase 4 by successfully completing the status phase of the Handshake3
control request. The derived PTK is installed by the device and available for use immediately following the
successful completion of the Handshake3 control request.

6.2.11 Key Management
This section describes the general key management philosophy of USB. In general, hosts are responsible for
key management operations. Hosts track the life of session keys and are responsible for creating and
distributing replacement keys, or causing replacement keys to be derived. Devices do not request new keys. If
a device becomes unsynchronized with respect to the current session key, the device must send a Reconnection
request.

Session keys are never transferred from device to host via the USB Framework. Distribution of a session key is
a one-way function. Once in possession of a session key, the device never divulges that key.

Get Key operations are restricted to public keys. If needed, a host will ask a device to divulge its public key.

6.2.11.1 PTK Management
The PTK is derived during the 4-way handshake and typically does not change during the life of the connection
unless a TrustTimeout occurs on either the host or device. Under extreme circumstances, the key can be
consumed if it is used to encrypt 248 packets. In this case, the host must perform an additional 4-way handshake
with the device in order to derive a new PTK before the old PTK expires and the SFC associated with that key
rolls over.

6.2.11.2 GTK Management
The GTK is shared among all devices. Because it is shared, it must be changed whenever a device leaves the
current group. Problems with detecting device departure in a wireless environment may cause hosts to choose
to update GTKs at a fixed periodic interval.

Distribution of the GTK presents special problems with key synchronization between the host and the devices.
The key distribution mechanism provides that the device will be ready to use the new key at the completion of
the distribution request. However, the host must re-key all the devices in the current cluster. A device can take
several MMC periods to respond to a key distribution, so synchronizing a GTK change among devices is an
almost impossible task.

Wireless Universal Serial Bus Specification. Revision 1.1

138

To simplify this task, USB requires that devices be capable of holding two current GTKs. Session keys have a
4-bit index value. The host will use this value to distribute GTKs in numerical order. The device provides a
table capable of holding two keys. The low bit of the session key index is used as the table index. This allows
Key2 to replace Key0, Key3 to replace Key1, etc.

When the initial connection is established, the host distributes key K0. When the host detects that a device has
left the group, it distributes K1 to all the devices in the group. When the last device responds, the host installs
and begins using the new GTK. On the next departure, the host distributes K2. Devices replace K0 with K2 as
they receive it. The host continues to use K1 until K2 is installed on the last device. If another device departs
before K2 can be distributed to all devices, a host should abandon distribution of K2, skip distribution of K3, and
begin distributing K4.

A device should not discard an older GTK until the host begins to use the new GTK. Once the host uses the new
GTK, it must not use the older GTK.

6.3 Association and Authentication
When a Wireless USB connection is made, the host and device must complete association and authentication
phases before the connection is considered operational. As the device progresses through the phases, additional
host components are made aware of the device. Upon completion of the phases, the device is presented to host
USB stack and standard USB device enumeration begins. In short, this means that device and host must fully
authenticate each other before the USB stack is made aware of the device.

Host Protocol Dev

Mutual Authentication

Connect Request

Connect Response

Notify – New Device

Normal Operation

USB Device Enumeration

Establish Encryption

Host Security USB Stack

Connect Request

Establish Encryption

Security Enumeration

Figure 6-2: Association Phases

The Association phase of a Wireless USB connection deals with three separate problems that must be addressed
in order to create a secure connection. The first problem is establishing the initial connection. In the wired-
USB world, this happens because a physical connection is made by the user. The host and device are informed
of the other’s presence via circuit completion and electrical signaling. In the wireless world, we can’t use
circuit completion so we must compensate by adding additional protocol messages to allow a device to request
a connection with a host.

The second problem that must be addressed is that of verification of the other party. In some manner or form,
each party involved in any connection must demonstrate to the other party that they have the “owner’s trust”
and can therefore be connected.

The third problem is derivation of the initial PTK. Once the initial PTK has been derived and the GTK has been
distributed, the device can be considered operational. It can then be presented to the main host USB Stack for
the standard USB device enumeration sequence.

 Wireless Universal Serial Bus Specification, Revision 1.1

 139

6.3.1 Connection and Reconnection Requests
A connection request is always initiated by a device and received by a host. The actual format of the
Connection request is covered in Section 7.6.1. Of interest to security are the unique device identifier and one
bit of information contained in the request. This bit is the NEW indicator. The state of these bits determines
the type of connection request being made.

Table 6-2: Connection Request Types

NEW Description

0 Connection Request – The device has previously been connected to this host. Verification will be
performed with the CK.

1 New Connection Request – The device has not previously been connected to this host. The host
will enumerate the security capabilities of the device to determine the appropriate authentication
procedure. The host will distribute a CC to the device.

Not all connection types are allowed at all times. Typically, a host will always allow reconnection requests but
only conditionally allow first-time connection requests. This allows automatic recovery from host reboot, loss
and recovery of channel, roaming, etc.

Some user-initiated event must be required to allow a host to accept new connections. The user is the only
entity in the user-host-device relationship who knows when a new device is present in the environment. Since
user validation of new devices is required anyway, involving the user at this stage serves as a pre-validation
step. This requirement also serves to prevent hosts from interfering with each other’s ability to connect to a
device.

A reconnection request is always initiated by a device and received by a host. The reconnection request allows
a device to request that it be allowed to resume operation at its previous USB device address, in its previous
device state. This allows the “trust” surrounding a connection to be regenerated without having to fully reset
and re-enumerate the device.

6.3.2 Authentication
The purpose of the Authentication phase is to allow the device and host to prove to each other that they have the
owner’s trust. There are several means of doing this, but the essence of most of the methods is that both parties
prove to each other that they know a common secret without revealing the actual secret.

New connections require some form of user-interaction as one of the parties to be connected will not yet have a
Connection key. This means that Owner trust has not yet been conveyed to that entity. Just how the user is
involved depends on the capabilities of the device. The different types of interactions are covered in detail in
the sections below.

6.3.2.1 Authentication Related Device Capabilities
USB Security provides multiple means of authentication, based on the capabilities of a device. The host
enumerates these capabilities from the device. It then uses the returned capabilities to determine which type of
Authentication process to use. Different types are provided to allow the best method to be selected for a
specific device type. Different methods make different requirements on devices, so one method may be easily
accomplished on one existing device architecture, while adding significant cost/complexity to another. For
instance, a printer may already contain a CPU sufficient for PK methods, whereas a specific ASIC state
machine would require much additional complexity.

6.3.2.1.1 Device has Out-Of-Band Channel for Key Distribution
Devices can provide an out-of-band channel for distribution of a Connection key. Examples of such out-of-
band channels might be wired USB connection, Near-field communications (NFC), memory card, user-
interface, etc. Devices that support this mode of key distribution never have to establish new connections. A
connection context is transferred to the device via the OOB channel before the first wireless connection is ever
made. Since the device was pre-loaded with a connection context, it can use connection requests to establish
connections with the host.

Wireless Universal Serial Bus Specification. Revision 1.1

140

6.3.2.1.2 Device has Symmetrical Association Key
Devices can have a fixed symmetrical association key. This is typically a hardwired key, set during
manufacturing. This key must be unique to the device. The user is required to transfer this key from the device
to the host in order to establish a new connection. This may be transferred by data entry or by OOB channel
means.

6.3.2.2 Ceremonies
A ‘Ceremony’ refers to the interactions between the entities involved in a secure relationship, specifically the
interactions involved in establishing the relationship. Ceremony diagrams are very similar to network protocol
diagrams. However, instead of requiring that protocol participants are network nodes, they encompass the user
and possibly the environment. The following sections present the Association ceremonies for association
methods listed. Note that many equivalent ceremonies can be constructed by simple reordering of ceremony
steps. Actual implementations of the ceremonies presented here may use equivalent ceremonies if sufficient
benefit exists for reordering.

6.3.2.2.1 Association Ceremony for Out of Band Channel Key Distribution
This ceremony is used with devices that have some means other than Wireless USB for receiving a connection
context. Regardless of how this OOB channel is implemented, some type of user action will be required to
either initiate or complete distribution of the connection context to the device. The user may either directly
enter the context information or physically shuttle a context container. Either way, the user’s involvement is
required. To be useful for transferring secrets, the user must be able to control access to the OOB channel. This
means that the OOB channel used is not susceptible to the same attacks as WUSB.

The Ceremony diagram shows that the ceremony first starts with a CC distribution between the user and the
host. Presumably, a distribution from user to host only happens once, when the host is first initialized. If the
CC is to be distributed electronically, the user will accept an electronic copy of the CC from the host (on
appropriate media).

The next step is the user distribution of the CC to the device. The user transfers the CC to the device via the
OOB channel. If the OOB channel is a wire or cable, then the user will not physically transfer the CC. The user
will however, be required to instruct the host to distribute the CC to the device.

Once the device has received a valid CC, it uses connect protocol to connect to the host. This protocol is a 4-
way handshake sequence using the CK. Successful completion results in the derivation of the PTK, distribution
of the GTK, and the announcement of device arrival to the USB sub-system.

Host Dev

 Distribute CC

Connect Request

Connect Acknowledge

Distribute CC

4-way handshake using CK

CC – Connection Context
CK – Connection key

Operational

 Wireless Universal Serial Bus Specification, Revision 1.1

 141

Figure 6-3 Ceremony for Out of Band Channel Context Distribution

Wireless USB 1.1 allows for out-of-band association using a USB cable (Cable Association) or using near-field
communications (NFC). Refer to Association Model Specification for more details on the architecture, and
protocol standard for the same.

6.3.2.2.2 Ceremony for Association using a Fixed Symmetric Key
This ceremony is used for devices that contain a “static” symmetric key for association purposes. This key
must uniquely represent the device. This key can be created during manufacturing or in some cases, be created
by the device when first powered up. The key must exist when the device attempts to associate.

The ceremony begins with the device distributing the key to the user. This distribution may be electronic or
printed. It could be embedded in installation software or it could be printed on the bottom of the device.
Regardless of how the distribution is done, the user is involved in transferring the key from the device to the
host. This allows the host to demonstrate Owner Trust by its knowledge of the device key. The device
likewise demonstrates Owner Trust by its knowledge of the key. It is important to note that we can treat this
key as if it were the owner key because the owner/user was involved in transferring the key. By transferring the
key, the owner has effectively approved use of the key as a temporary owner key. While transferring the key to
the host, the owner should also instruct the host to advertise via its MMCs that new connections are allowed.
Note that in real implementations, the user may not transfer the key to the host until after the device has made
its connect request. This allows the host to postpone seeing the key until it knows what the key purpose is.

The device will see the host allowing new connections and make a connect request with the NEW attribute set.
The host completes the request and notifies the SME that a new device needs to be processed. The SME
enumerates the device and discovers that a fixed symmetric key is required. It gets this key from user, either
now or earlier, and enables encryption.

The host and device next perform a 4-way handshake that allows host and device to both prove to each other
that they know the fixed key and to derive a PTK to protect the CC.

After successful completion of the 4-way handshake, the host distributes a CC to the device. It then announces
the device to the USB sub-system.

Host Dev

FSK + New Connects Allowed
New Connect ‘OK’ MMC

Connect Button Pressed

Connect Request (NEW)

Connect Acknowledge

4-way handshake using FSK

FSK

CC protected with PTK

Operational

FSK – Fixed Symmetric Key
CC – Connection Context
PTK – Pair-wise
 Temporal Key

Figure 6-4 Ceremony for Fixed Symmetric Key Association

6.3.2.2.3 Ceremony for Association using In-band Key Exchange Protocols
This ceremony is used for devices that support in-band key exchange protocols based on Diffie-Hellman.
Wireless USB 1.1 supports numeric and Fixed PIN based association models that use Diffie-Hellman algorithm
to derive a shared secret.

Wireless Universal Serial Bus Specification. Revision 1.1

142

The ceremony begins with the user instructing the host to advertise for and accept new connections. The device
will see the host allowing new connections and make a connect request with the NEW attribute set. The host
completes the request and notifies the Security Entity that a new device needs to be processed. The SME
enumerates the device and discovers the appropriate in-band association mechanism to derive the shared secret.
The association follows the security protocol defined in the association model specification.

At this point, the owner becomes involved. In case of numeric association, the owner has to validate the
association by verifying the numbers displayed on both the host side and the device side. This validation step is
necessary to verify that the host and device are connected to each other and not to malicious agents. This step is
also necessary because the user validation of the received keys serves as the transfer of Owner Trust from the
owner to the device and host. The owner is instructing the host and device to trust the owners of the received
keys. The numeric association protocol defines the mechanism to derive a connection context using Diffie-
Hellman exchange. The host performs a 4-way handshake using the newly derived CC and this allows the host
and device to derive a PTK and begin secure operation.

In case of Fixed PIN association using fixed tag, the device has a public key programmed at the factory, which
is used to derive a PIN and a Check Vector (CV). The combination of PIN and CV is referred to as the tag,
which is usually provided as a secret by the device manufacturer. The device manufacturer must not use the
same tag across the devices. The owner of the device enters the tag when prompted by the host. If the tag
matches the tag programmed in the device, a connection context is derived between the host and the device
using Diffie-Hellman key exchange, which is then used to begin secure operation after a 4-way handshake. The
owner can modify the tag of the device following the procedure defined in the association model
specification.

Host Dev

Connect Button Pressed

New Connect ‘OK’ MMC

Connect Button Pressed

Connect Request

Exchange PKs

Display DPK

Connect Response

Validate DPK

Display HPK

Validate HPK

CC Encrypted w. DPK

operational

DPK – Device’s Public Key
HPK – Host’s Public Key
CC – Connection Context
CK – Connection Key

4-way handshake w. CK

 Wireless Universal Serial Bus Specification, Revision 1.1

 143

Figure 6-5 Ceremony for Numeric Association

Host Dev

Connect Button Pressed

New Connect ‘OK’ MMC

Connect Button Pressed

Connect Request

Key Derivation using DH

Enter Fixed Tag (PIN + CV) Connect Response

operational

DH – Diffie-Hellman
CK – Connection Key
CV – Check Vector

4-way handshake using CK

Figure 6-6 Ceremony for Fixed PIN Association

6.4 Interfacing to AES-128 CCM
This section provides the details for interfacing with AES-128 CCM. As specified, this protocol requires the
message and some additional keying material be formatted into the CCM nonce, Counter-mode blocks, and
encryption blocks. The CCM nonce provides uniqueness to each message. The Counter-mode blocks are used
to calculate the MIC. The encryption blocks provide the keystream that it used to encrypt the message and the
MIC.

6.4.1 CCM nonce Construction
The CCM nonce is constructed from the following MAC-Layer header components: SrcAddr, DestAddr, TKID,
and SFN. The format of the nonce is given in Table 6-3. All values are stored in little-endian byte order.

Table 6-3: CCM nonce format

Offset Field Size Description

0 SFN 6 The secure frame number value associated
with this message.

6 TKID 3 The Temporal Key ID value ‘names’ the key
used to encrypt/decrypt this message.

9 DestAddr 2 The address of the destination device.

11 SrcAddr 2 The address of the source device.

6.4.2 l(m) and l(a) Calculation
CCM encodes two values into the message. These values are l(m), the encrypted data length, and l(a), the
additional authenticated data length. These values are calculated from appropriate Encryption Offset (EO) for
the message and the length of the message. Note: “length of message” in this context is assumed to be the sum
of the length of MAC header, Wireless USB header and data payload. The values are calculated as:

l(a) = EO + 14

l(m) = unencrypted message length – EO – 10

Wireless Universal Serial Bus Specification. Revision 1.1

144

6.4.3 Counter-mode Bx Blocks
For calculation of the MIC, the message is broken into 2 or more counter-mode blocks. The CCM specification
refers to these blocks as blocks B0 – Bn. Table 6-4 gives the format of block B0. Table 6-5 gives the format of
Block B1.

Table 6-4: Block B0 format

Offset Field Size Value Description

0 Flags 1 59H As per CCM specification

1 CCM Nonce 13 variable The CCM Nonce as described above.

14 MSB_l(m) 1 variable The most significant byte of the l(m) value.

15 LSB_l(m) 1 variable The least significant byte of the l(m) value.

Table 6-5: Block B1 format

Offset Field Size Value Description

0 MSB_l(a) 1 variable The most significant byte of the l(a) value.

1 LSB_l(a) 1 variable The least significant byte of the l(a) value.

2 MAC Header 10 variable The entire MAC header in transmission order

12 EO 2 variable The Encryption Offset component of the MAC-
Layer security extensions to the MAC header.

14 Security Reserved 1 Variable The Security Reserved component of MAC-Layer
security extensions to the MAC header.

15 Padding 1 0 This byte is only used to pad the block. It is not part
of the message and never transmitted.

When EO is non-zero, additional authentication blocks are built from payload bytes (in transmission order) until
EO bytes have been consumed. The remainder of the block is padded with zeros as needed. The padding is not
transmitted. This forces the start of the encrypted data to be aligned with authentication blocks, allowing for
optimization of the encryption and decryption logic.

6.4.4 Encryption Ax Blocks
CCM uses the Ax blocks to generate the keystream that is used to encrypt the MIC and the portion of the
message to be encrypted. Counter i is initialized to zero to form block A0 and incremented for generating
successive blocks. Block A0 is always used to encrypt or decrypt the MIC. Additional Ax blocks are generated
as needed for encryption or decryption of the payload.

Table 6-6: Block Ax format

Offset Field Size Value Description

0 Flags 1 01H As per CCM specification

1 CCM Nonce 13 variable The CCM Nonce as described above.

14 MSB Counter i 1 variable The most significant byte of Counter i.

15 LSB_Counter i 1 variable The least significant byte of Counter i.

6.5 Pseudo-Random Function Definition
This chapter makes use of cryptographic random numbers in several locations. The Pseudo-Random Function
(PRF) definition provides these numbers. The function is also used for key derivation during the 4-way
handshake and for calculating MICs to protect the 4-way handshake messages. As used in this chapter, 3 output
sizes are needed: 64 bits, 128 bits, and 256 bits. We therefore define 3 versions of the PRF function.

 Wireless Universal Serial Bus Specification, Revision 1.1

 145

 PRF-64, which outputs 64 bits,

 PRF-128, which outputs 128 bits, and

 PRF-256, which outputs 256 bits.

In the following, K denotes the master key (MK) used for derivation, N denotes the CCM nonce, A denotes a
unique 14-byte ASCII text label for each different use of PRF, B denotes the seed data stream to be processed,
and Blen specifies the length of this data stream.

The following pseudo-function demonstrates how PRF interfaces to the CCM logic. This function takes a data
string and returns the encrypted CBC Counter-mode MIC.

CCM-MAC-FUNCTION(K, N, A, B, Blen)

 Format Block B0 from l(m) = 0, N, and flags = 0x59
 Format Block B1 from A and l(a) = Blen + 14
 Format additional blocks from B as specified by Blen
 (note, last block is padded with values of zero as needed)
 Format block A0 from flags = 0x01, N and Counter = 0
 The Bx blocks are processed in CBC-Counter mode to generate the MIC value for the

blocks. The MIC is then encrypted with the keystream generated with the A0 block.

 return encrypted MIC

The next pseudo-function provides the logic for PRF itself. The process concatenates MIC values to create a
value of the requested length.

PRF(K, N, A, B, Blen, Len)
 result = empty
 for (i = 0; i < (Len + 63)/64; i++, N.SFN++)
 result = result contatenated with CCM-MAC-FUNCTION(K, N, A, B, Blen)
 return result

The following definitions provide convenient handles for the 3 sizes of PRF results used in this
specification.

PRF-64(K, N, A, B, Blen) = PRF(K, N, A, B, Blen, 64)
PRF-128(K, N, A, B, Blen) = PRF(K, N, A, B, Blen, 128)
PRF-256(K, N, A, B, Blen) = PRF(K, N, A, B, Blen, 256)

6.5.1 Key Derivation
Key derivation during the 4-way handshake depends on PRF-256 to generate the actual session keys from the
supplied data. Key derivation using PRF-256 requires users to specify the following parameters:

Name Size (bytes) Description

HID 2 Current DevAddr of the Host

DID 2 Current DevAddr of device

HNonce 16 Random value selected by Host (from message 1)

DNonce 16 Random value selected by device (from message 2)

TKID 3 Host-supplied key name (from message 1)

MK 16 The master key the PTK should be derived from, either a CK or
FSK.

The Key Derivation function creates the PRF-256 parameters from these parameters as follows:

 K – The master key (MK) being used for derivation
 N – B11-12=Host ID, B9-10=device ID, B6-8=TKID, B0-5=zero
 A – “Pair-wise keys”

Wireless Universal Serial Bus Specification. Revision 1.1

146

 B – HNonce || DNonce
 Blen – 32

The Key Derivation function then calls PRF-256 to compute 256- bits of key stream. This key stream is then
split to form the initial management and data keys. The least significant 16 bytes of Key Stream becomes the
KCK while the most significant 16 bytes become the PTK.

 KeyStream � PRF-256(K, N, A, B, Blen)

Key Name Source

KCK <none> KeyStream[0..15]

PTK TKID KeyStream[16..31]

6.5.2 Out-of-band MIC Generation
The 4-way handshake uses out-of-band MIC calculations for handshake phases 2 and 3. PRF-64 is used to
provide these OOB MIC calculations. The OOB MIC function creates the PRF-64 parameters as follows:

 K - The KCK from the key derivation process
 N – B11-12=Host ID, B9-10=Device ID ID, B6-8=TKID, B0-5=zero
 A – “out-of-bandMIC”
 B – Message data to be authenticated
 Blen – length in bytes of message data

MIC � PRF-64(K, N, A, B, Blen)

6.5.3 Example Random Number Generation
In order to implement the cryptographic protocols outlined in this specification, every platform needs to be able
to generate cryptographic grade random numbers. RFC 1750 gives a detailed explanation of the notion of
cryptographic grade random numbers and provides guidance for collecting suitable randomness. It recommends
collecting random samples from multiple sources followed by conditioning with PRF. This method can provide
a means for an implementation to create an unpredictable seed for a pseudo-random generation function. The
example below shows how to distill such a seed using random samples and PRF-128. The randomness samples
must be derived from a physical entropy source, such as RF noise, thermal noise, or other unpredictable
physical sources of entropy. In the example below, ‘||’ denotes concatenation.

LoopCounter = 0
Nonce = 0
Result = empty
 while (LoopCounter < 32) {
 result = PRF-128(0, Nonce, “InitRandomSeed”,
 USB Vendor ID || USB Product ID || Time || result || LoopCounter, dataLen)
 Nonce = Nonce + 1
 result = result || <randomness samples>
 }
 GlobalSeed = PRF-128(0, Nonce, “InitRandomSeed”,
 DevAddr || Time || result || LoopCounter, dataLen)

Once the seed has been distilled, it can be used as a key for further random number generation. The 4-way
handshake requires each party to supply a 128-bit random number. This number can be generated using the
seed and PRF-128

GenerateRandomNonce
 N = DevAddr || DevAddr ||6 bytes of zero
 <<Collect randomness samples>>
 result = PRF-128(Global Seed, N, “Random Numbers”,
 <randomness samples>, length of samples)
 return result

 Wireless Universal Serial Bus Specification, Revision 1.1

 147

The construction of N in this example differs from the nonce construction for transmitted data because this is an
internal re-use of the CCM logic. The initial value of N in this example could be 0, but adding a non-zero
component serves to bind the results to this specific usage. This example uses two copies of DevAddr for this
purpose because it is typically readily available on all devices before a connection is made. The initial value
for N in a true implementation is at the discretion of the designer.

 Wireless Universal Serial Bus Specification, Revision 1.1

 148

Chapter 7
Wireless USB Framework

This chapter describes the common attributes and operations of Wireless USB Device Management. It depends
on Chapter 9, “USB Device Framework”, of the USB 2.0 Specification as the baseline, and then describes
differences and extensions to the base USB Framework. The chapter starts with a description of a device state
machine. This is followed by a description of extensions to standard Framework commands to support the
wireless device space, then a description of the Security-specific extensions. This chapter concludes with a
description of the additional Descriptors and Information Elements needed to support wireless devices.

7.1 Wireless USB Device States
A device has several possible states. Some states are visible to the Wireless USB host, while others are internal
to the device. This section describes the visible states.

The device states envelope the USB device states documented in the USB 2.0 specification as illustrated in
Figure 7-1

Un-
Authenticated

Default

Address

Configured

4-way Cmplt
SetKey (groupKey)

SetAddress (0)

Address
Assigned

Device
Configured

Device
Deconfigured

Un-
Connected Connect

ACK (UnAuthAddr)
Explicit Disconnect

Reconnect Failed
ResetDev
4-way Failed

SetAddress(0)

Connect Notification

Reconnecting

TrustTimeout

ReConnect
ACK (UnAuthAddr)

ACK (PrevAddr)

ReConnect
Notification

4-way Cmplt or
(4-way Cmplt
SetAddress (PrevAddr))

4-way Start

Figure 7-1. Wireless USB Device State Diagram

 Wireless Universal Serial Bus Specification, Revision 1.1

 149

Because a physical connection does not exist, data communication between a device and host requires that a
relationship be established to serve as a logical connection. As noted in previous chapters, a host and device
have to make this logical connection secure before the host will use the functions advertised on the device. The
model for establishing a connection and securing it is based on the device states illustrated in Figure 7-1. The
sections below describe the specific device states and the general events or criteria required to occur for the
device to make a state transition.

Devices don’t receive power from the host platform which means they must use power from a local source.
Therefore, the device state diagram does not include the notion of a “powered” device state.

7.1.1 UnConnected
A device that does not have any established communications with a Wireless USB host is in the UnConnected
state. A device defaults to this state on power up and can return to this state if:

 The device or host executes an explicit disconnect, or

 A reconnection attempt fails (i.e. host does not acknowledge the encrypted DN_Connect notification from
the device), or

 The device observes a ResetDevice_IE with a matching CDID element value, or

 A 4-way handshake does not complete successfully. Failures may occur due to a variety of factors,
including taking longer than TrustTimeout seconds to complete, a STALL response, etc.

To exit the UnConnected state, the device must find another Wireless USB Host in a common channel
(Appendix D).

While in the UnConnected state, the only data communications a device can initiate with a host over its
Wireless USB Channel is a connect device notification (see DN_Connect in Section 7.6.1) . A device in the
UnConnected state must have its Wireless USB channel device address set to the
UnConnected_Device_Address, see Section 4.3.8.5. A device must include a WUSB ASIE (7.7.7.1) in its
beacons before it transmits a DN_Connect notification. A device must not use secure packet encapsulation (i.e.
SEC bit = 0b) when transmitting DN_Connect notifications when in the UnConnected device state. A device
stays in this state until a specific wireless USB host instructs the device to connect using the “connect to me”
(refer chapter 4.13.2) procedure or until the device has explicitly attempted to connect (via a connect device
notification) with a specific host on its Wireless USB channel and the host has acknowledged receipt of the
connect notification by sending a Connect Acknowledgement. When the host responds to a connect notification,
the acknowledgement will also assign the device a device address in the
Unauthenticated_Device_Address_Range, see Section 4.3.8.5

At this point the device and host have exchanged information, so the two know that data communications are
possible, and the device is logically “connected” to the host’s Wireless USB channel. The device transitions to
the Connected general state.

7.1.2 UnAuthenticated
The device entry sub-state within the connected device state is the UnAuthenticated device state, where data
communications between the host and device are restricted to exchanging authentication messages and other
related security information. This information can only be exchanged over the Default Control Pipe and because
the device is unauthenticated most of the exchange must be conducted in plain text (i.e. no security
encapsulation). Control requests are allowed in this state to authenticate the connection, allow the host to
distribute the GTK, and to set the device to a specific USB device address in order to transition it to the
Authenticated device state. The data communications that are allowed between a host and device from the
UnAuthenticated state are described in Section 7.3.

When the device enters this state, it may have a device address in either the unauthenticated or USB device
address range. If the host decides to completely re-enumerate the device, the following ordered set of control
operations must successfully complete in order to transition the device to the Default sub-state of the

 Wireless Universal Serial Bus Specification, Revision 1.1

 150

Authenticated device state. Note, this is the required sequence the host must take when the device is coming
from the UnConnected device state.

1. The host successfully completes the authentication process (4-way handshake). This set of control
transfers establishes the PTK (used for data packet encryption).

2. The host successfully completes a SetKey(GTK) request. The host uses this request to load the current
GTK onto the device so that the device can authenticate Wireless USB Channel broadcast packets (e.g.
MMCs). The host must encrypt the data stage of this request (using the PTK established during the 4-
way handshake) in order to protect the delivery of the GTK.

3. And finally, the host completes a SetAddress(0) request. The device must authenticate the MMC which
includes the new device address using the GTK.

After the 4-way handshake completes, the device and host are required to begin using the PTK to encrypt all
data phase and handshake phase transaction packet transmissions. After the SetKey(GTK) is complete, the
device must authenticate all MMCs before responding to requests.

The host may choose to simply re-authenticate the device and return it to its previous Authenticated device
sub-state. To accomplish this the host must first re-authenticate the device (successfully complete a 4-way
handshake) and optionally a SetAddress() to the device’s previously authenticated USB device address. Note
the SetAddress() is only required here if the host responded to the DN_Connect with a device address in the
UnAuthenticated_Device_Address_Range.

If the ordered set of control operations fails to complete within TrustTimeout seconds (start to finish), the device
returns to the UnConnected device state. Note that if the 4-way handshake fails from the host’s perspective, the
host will simply not continue with the authentication control requests. The host may give up retrying the
SetKey() and SetAddress() requests after an implementation-specific number of tries. If the device responds to
any of the control requests in this sequence with a STALL response, it will then return to the UnConnected
device state.

There are no intended inter-dependencies between the different kinds of control requests that are valid in this
state, besides those described above between the 4-way handshake, the SetKey(GTK) and the SetAddress(). In
general a host should perform all ancillary control requests to read pertinent information from the device before
beginning the ordered sequence of commands required to transition the device to the Authenticated device
state.

7.1.3 Authenticated
The intent of this state is that it is the ‘normal’ operating state for functional data communications using secure
packet encapsulation. If the device address on entry to this state is zero (0), then the required destination sub-
state is the Default state. Whenever a SetAddress(0) completes, the device will transition directly to the Default
device state. The side-effects of a SetAddress(0) are defined in Section 4.12. If the device address on entry to
this state is not zero, the device returns to the appropriate sub-state it was in previously when it transitioned
from the Authenticated to Reconnecting state (TrustTimout) or Authenticated to UnAuthenticated state (for
4-way Start).

The definition and use of the Address and Configured device sub-states are identical to those defined in the
USB 2.0 specification (Chapter 9). Note that only the Default Control Pipe is available for data communications
over the Wireless USB channel when the device is not in the Configured device state (see Figure 7-1). By
definition, function endpoints do not exist until the device has been configured; therefore, a device must not
respond to transactions addressed to non-configured endpoints.

Note that the host may initiate a 4-way handshake at any time with the device, including while it is in any sub-
state of the Authenticated device state. The control transfers used to conduct the 4-way handshake do not use
secure data encapsulation during the data and handshake phases of the control transfers. A device must
transition to the UnAuthenticated state when the host starts a 4-way handshake and all the keys the device has
must be discarded.

A device will exit this state under the following:

 Wireless Universal Serial Bus Specification, Revision 1.1

 151

 Explicit disconnect event. The device or host has initiated an explicit disconnect or the User of the device
has initiated a New Connect operation. The device transitions to the UnConnected device state.

 Authentication Refresh Fails. In other words, a 4-way handshake fails to complete. The device transitions
to the UnConnected device state.

 Trust Timeout Event. As described in Section 6.2.10.2 a device must not trust the data communications
with its host whenever it loses communications for greater than a TrustTimeout. Precisely, when a device
does not observe Wireless USB channel broadcast packets (e.g. MMCs) from its host for a TrustTimeout
period, it must cease responding to any data transactions and transition to the Reconnecting device state.

 Reception of Set Handshake 1. The device must transition to the UnAuthenticated state when the host
starts a 4-way handshake.

7.1.4 Reconnecting
The device enters this state whenever it has not received a Wireless USB channel broadcast packet (e.g. MMC)
for greater than TrustTimeout seconds. When in this state, the device will attempt to reconnect to its host using
the DN_Connect device notification as describe in Section 7.6.1.2. Devices must use secure packet
encapsulation (i.e. SEC bit = 1b) when transmitting DN_Connect notifications while in this state.

The device will transition to the UnAuthenticated device state when the host acknowledges a reconnect
notification. The host response to the reconnect notification is a Connect Acknowledge IE with bDeviceAddress
field value equal to either the value of the Previous Address field in the DN_Connect notification or an address
in the UnAuthenticated_Device_Address_Rrange.

The device will transition to the UnConnected device state if the host does not respond to the reconnect device
notification attempts after 6 attempts.

Note that a device must retain its previous context from the Authenticated device state in the event the host
does not assign the device address 0 during the process of returning it to the Authenticated device state (i.e.
simply returns the device to its previous Authenticated device sub-state).

7.2 Generic Wireless USB Device Operations
All devices support the generic operations defined in USB 2.0. This section explicitly describes the new generic
device operation specific to Wireless USB.

7.3 Standard Wireless USB Device Requests
All devices must support the required set of standard device requests defined in USB 2.0, chapter 9. All
required USB 2.0 standard requests are available once the device is in the Authenticated device state. Since the
USB device states are encapsulated as sub-states within the Authenticated device state, any and all USB 2.0
restrictions on request use or availability based on device state continue to be valid.

Wireless USB also places restrictions on which requests are allowed to be used outside of the Authenticated
state. These restrictions provide a narrow window of functionality while the association and authentication
processes are active. Table 7-1 summarizes these use restrictions for all requests defined in the USB 2.0
specification. The remainder of this section details modifications to the USB 2.0 standard requests and defines
new standard requests for Wireless USB. Each request is annotated with information about what device states
the request is available. Note the host must use the base signaling rate for all standard device requests (i.e.
control transfers to the Default Control Pipe) unless specifically noted otherwise.

Table 7-1. Standard Request Availability in Wireless USB Device States

Request

Available in
UnAuthenticated

Device State Note

CLEAR_FEATURE No

GET_CONFIGURATION Yes

 Wireless Universal Serial Bus Specification, Revision 1.1

 152

Request

Available in
UnAuthenticated

Device State Note

GET_DESCRIPTOR Yes The type of descriptors that can be read from the
device are limited to the Device and BOS
Descriptors, any String Descriptors and all of the
Security Descriptors.

GET_INTERFACE No This request is only valid in the Configured device
state because it queries the current configuration.

GET_STATUS Yes

LOOPBACK_DATA_READ Yes

LOOPBACK_DATA_WRITE Yes

SET_ADDRESS Yes Note, see Section 7.3.1.3 for additional special
requirements for handling this request in Wireless
USB.

SET_CONFIGURATION No

SET_DESCRIPTOR No

SET_FEATURE No Note, the TEST_MODE feature is not supported
by Wireless USB devices.

SET_INTERFACE No This request is only valid in the Configured device
state because it queries the current configuration.

SET_INTERFACE_DS No This request is optional. It is supported by
devices with interfaces that support the dynamic
switching mechanism.

SYNCH_FRAME No

7.3.1 Wireless USB Extensions to Standard Requests

This section describes extensions to the standard set of device requests defined in the USB 2.0 specification [1].
This includes extensions to the requests defined in the USB 2.0 specification (Section 9.4) and specific requests
defined for Wireless USB. Table 7-2 summarizes the standard Wireless USB device requests and Table 7-16
summarizes the Wireless USB Security Requests.

Table 7-2. Wireless USB-specific Standard Device Requests

bmRequestType bRequest wValue wIndex wLength Data

00000000B CLEAR_FEATURE WUSB_DEVICE WUSB Feature
Selector and
Feature Value

Zero None

10000000B GET_STATUS Zero Device Status
Selector

Variable Status
Selector Data

00000000B SET_ADDRESS Device Address Zero Zero None

00000000B SET_FEATURE WUSB_DEVICE WUSB Feature
Selector and
Feature Value

Zero None

00000001B SET_INTERFACE_DS Alternate Setting Interface 2 Presentation
Time

00000000B SET_WUSB_DATA WUSB Data
Selector

Zero WUSB Data
Length

WUSB
Selector Data

00000000B LOOPBACK_DATA_WRITE Zero Zero Data Length Data

10000000B LOOPBACK_DATA_READ Zero Zero Data Length Data

 Wireless Universal Serial Bus Specification, Revision 1.1

 153

The USB 2.0 specification [1], Section 9.4 lists request codes for the standard device commands over the
Default Pipe. Table 7-3 is an annotated list of additional standard request codes for devices. The annotations
indicate whether the request code is specific to security.

Table 7-3: Wireless USB Standard Request Codes

bRequest Value Purpose

SET_ENCRYPTION 13 Security

GET_ENCRYPTION 14 Security

SET_HANDSHAKE 15 Security

GET_HANDSHAKE 16 Security

SET_CONNECTION 17 Security

SET_SECURITY_DATA 18 Security

GET_SECURITY_DATA 19 Security

SET_WUSB_DATA 20 General

LOOPBACK_DATA_WRITE 21 General

LOOPBACK_DATA_READ 22 General

SET_INTERFACE_DS 23 General

The USB 2.0 specification, Section 9.4 lists standard feature selector values for enabling or setting specific
features. Table 7-4 is a list of additional standard features selectors for devices. Wireless USB uses one feature
selector value (WUSB_DEVICE) then defines a family of Wireless USB specific features which are relative to
WUSB_DEVICE feature selector. The commands ClearFeature, SetFeature and GetStatus detail how Wireless
USB uses these features.

Table 7-4. Wireless USB Standard Feature Selectors

Feature Selector Recipient Value Wireless USB Feature Selectors

WUSB_DEVICE Device 3 Feature Name Code

Reserved and
shouldn’t be used in
future revisions

0 - 3

POWER
INDICATION

4

7.3.1.1 Clear Feature
This request is used to clear a specific feature. The USB 2.0 defined uses of this command remain in effect for
Wireless USB, see Section 9.4.1 in the USB 2.0 specification. The following description details extensions to
this request for Wireless USB.

bmRequestType bRequest wValue wIndex wLength Data

00000000B CLEAR_FEATURE Feature Selector =
WUSB_DEVICE

 Wireless USB Feature
Selector

Zero None

Zero or Feature Value

When the feature selector field (wValue) is set to WUSB_DEVICE, the least significant byte of wIndex is used
to further qualify which Wireless USB device feature is to be modified with this request. Wireless USB device
features are summarized in Table 7-11. Table 7-5 summarizes which of the Wireless USB features can be
modified with the ClearFeature() request.

 Wireless Universal Serial Bus Specification, Revision 1.1

 154

UnAuthenticated State: If the the specified feature selector is WUSB_DEVICE, device behavior when this
request is received while the device is in the UnAuthenticated state is not specified.

Default State: If the specified feature selector is WUSB_DEVICE, device behavior when this
request is received while the device is in the Default state is not specified.

Address State: This request is valid in the Addressed state.

Configured State: This request is valid in the Configured state.

Table 7-5. Features Modifiable via ClearFeature()

Wireless USB
Feature Selector Explanation

POWER INDICATION On receipt of this request, the device will be disabled from sending DN_PWR
notifications to the host to indicate its power status. See Section 4.16.4

7.3.1.2 Get Status
This request returns status information about different portions of a device. The following description details the
extensions to the GetStatus() request for Wireless USB. For a description of the standard USB 2.0 request, refer
to Section 9.4.5 in the USB 2.0 specification.

bmRequestType bRequest wValue wIndex wLength Data

10000000B GET_STATUS Zero Device Status Selector Variable Status Selector Data

The format of this request is a standard GetStatus() request as defined in USB2.0, with extended definition of
the wIndex field when the recipient is DEVICE. The USB 2.0 specification requires that wIndex have a value of
zero when bmRequestType specifies the recipient is the device (with a bRequest of GET_STATUS). The
extension for Wireless USB encodes wIndex with a value indicating the specific device information the host is
interested in. Note that the availability of this request depends on the state of the device and the addressed
recipient. For example, a host should not address this request to an endpoint when the device is in the Default
state because it has undefined results.

UnAuthenticated State: This request is valid in the UnAuthenticated state.

Default State: This request is valid in the Default state (depending on recipient).

Address State: This request is valid in the Addressed state.

Configured State: This request is valid in the Configured state.

Table 7-6. Device-Level Status Selector Encodings for wIndex

wIndex Status
Type

Description

0000H USB 2.0
Standard
Status

This is the default encoding for this command defined in the USB 2.0
specification. It summarizes a small set of device level status indicators.
This set of status indicators has been extended as described below for
Wireless USB

0001H Wireless
USB
Feature

This encoding returns the current values of Wireless USB specific
features.

0002H Channel
Info

This encoding indicates the device must return information about its view
of the Wireless USB channel. The format of the data returned is defined
below.

0003H N/A Reserved and shouldn’t be used in future revisions.

0004H N/A Reserved and shouldn’t be used in future revisions.

0005H Current
Transmit

This encoding instructs the device to return its current transmit power
settings for Notifications, see below for details.

 Wireless Universal Serial Bus Specification, Revision 1.1

 155

Power

0006H Power
Status

This encoding instructs the device to return its power status.

0007H Other Host
Information

Get CHID and Friendly name details of other host that is requesting
connection using Connect-to-me.

USB 2.0 Standard Features

When the wIndex value is USB 2.0 Standard Status, the device returns the information illustrated in Figure
7-2.

Byte D7 D6 D5 D4 D3 D2 D1 D0

0 Reserved, must be set to zero Battery
Powered

Remote
Wake

Self
Powered

1 Reserved, must be set to zero

Figure 7-2. USB 2.0 Standard Status Information Returned by a GetStatus() Request to a Device

Refer to Section 9.4.5 of the USB 2.0 specification for descriptions of the Remote Wake and Self Powered
fields. The Self Powered field should always return set to a one (1B) for a Wireless USB device. The default
value for Remote Wake is defined in the USB 2.0 specification.

The Battery Powered field indicates whether the device is currently battery-powered. If D2 is reset to zero, the
device is powered by a supply that is not a battery. The Battery Powered field value may not be changed by the
SetFeature() or ClearFeature() requests.

Wireless USB Features

When the wIndex value is Wireless USB Feature Status, the device returns the information illustrated in
Figure 7-3. The default values of these features after any device power-up or reset event is zero.

Byte D7 D6 D5 D4 D3 D2 D1 D0

0 Reserved, must be set to zero Power
Indication

Reserved
and

shouldn’t
be used
in future
revisions

Reserved
and

shouldn’t
be used
in future
revisions

Reserved
and

shouldn’t
be used
in future
revisions

Reserved
and

shouldn’t
be used
in future
revisions

Figure 7-3. Information Returned by GetStatus(WirelessUSBFeatures)

The Power Indication field indicates whether the device is enabled to send DN_PWR notifications. This field is
changed by SetFeature() and ClearFeature(). See Section 7.3.1.6 for details on the usage of this field.

Channel Information

When wIndex value is equal to Channel Info, the device must return the information it has gathered with regards
to the state of the underlying PHY channel. The format of the data returned is summarized in Table 7-7. A host
can use this command to determine how well the device is receiving MMCs from the host.

Table 7-7. Wireless USB Channel Status Information Returned by Device

Offset Field Size Value Description

0 LQI 1 Number LQI value of the last MMC packet received from the Host.

 Wireless Universal Serial Bus Specification, Revision 1.1

 156

Current Transmit Power

When the wIndex value is equal to Current Transmit Power, the device will respond with the current power
level setting. The data content of the data returned by the device is formatted as illustrated in Table 7-8.

Table 7-8. Current Transmit Power Status Format

Offset Field Size Value Description

0 bTxNotificationTransmitPower 1 Number Value indicating the number of steps below
the highest power level that is currently
being used for notification transmissions.
The default value is zero.

1 N/A 1 Number Reserved and shouldn’t be used in future
revisions.

Power Status

When the wIndex value is equal to Power Status, the device will respond with the current power status
including power indication level setting. The data content of the data returned by the device is formatted as
illustrated in Table 7-9.

Table 7-9. Power Status Format

Offset Field Size Value Description

0 bCurrentPowerLevel 1 Number Percentage of power currently
available to the device.

1 wRemainingOperationTime 2 Number The remaining operation time of the device,
as a number of TrustTimeout periods.

3 bWarningLevelThreshold 1 Number Percentage of power remaining in the
device which will trigger DN_PWR
notifications at warning level

4 bCriticalLevelThreshold 1 Number Percentage of power remaining in the
device which will trigger DN_PWR
notifications at critical level

5 bmCharging Status 1 Bitmap Bitmap encoding the device‘s charging
status.

 Bit Description

0 Device power is rechargeable

1 Charging status of device, this
is only valid when the device
indicates that the device power
is rechargeable.

Value Description

0B Not charging

1B Charging

7:2 Reserved. Must be set to
zero.

 Wireless Universal Serial Bus Specification, Revision 1.1

 157

Other Host Information

When the wIndex value is equal to Other Host Information, the device will respond with the CHID and
FriendlyName of the host requesting connection through Connect-to-me. The data content of the data
returned by the device is formatted as illustrated in Table 7-12.

Table 7-10. Other Host Information Format

Offset Field Size Type Description

0 CHID 16 Number CHID of the host requesting connection through
Connect-to-me IE.

16 FriendlyName Variable String UNICODE string (UNICODE UTF-16LE
encoding) used to hold the friendly name string
of the host requesting connection through
Connect-to-me IE. Size must be between
0000H and 0040H.

7.3.1.3 Set Address
This request is nominally identical to that specified in the USB 2.0 specification (see Section 9.4.6 in Reference
[1]). The requirement of a device, for this request is to retain the current address until the Set Address request is
complete. The device nominally considers the Set Address transfer complete when it transmits the Handshake
packet for the Status stage. In order to tolerate the loss of the handshake and subsequent retries of the Status
stage handshake, a device is required to retain the old device address until the host begins to use the new
address which was sent to the device in the Set Address transfer. Note, the host must provide at least 2ms of
relaxation time from the end of the SetAddress request and a request addressed to the new device address.

UnAuthenticated State: This request is valid in the Unauthenticated state. See 7.1.2 for rules for side effects
of this request when in the UnAuthenticated state.

Default State: This request is valid in the Default state. If the address specified is zero, then the
device must remain in the Default state.

Address State: This request is valid in the Addressed state. If the address specified is zero, then the
device must enter the Default state; otherwise, the device remains in the Address
state but uses the newly-specified address.

Configured State: This request is valid in the Configured state.

7.3.1.4 Set Feature
This request is used to set or enable a specific feature. The USB 2.0 defined uses of this command remain in
effect for Wireless USB see Section 9.4.9 in the USB 2.0 specification. Note that the single exception to this is
the TEST_MODE feature, which is explicitly not supported (as documented) by devices. The following
description details extensions to this request for Wireless USB.

bmRequestType bRequest wValue wIndex wLength Data

00000000B SET_FEATURE Feature Selector =
WUSB_DEVICE

 Wireless USB Feature Selector Zero None

Zero or Feature Value

When the feature selector field (wValue) is set to WUSB_DEVICE the least significant byte of wIndex is used
to further qualify which Wireless USB device feature is to be manipulated with this request. The Wireless USB
device features are summarized in Table 7-11.

If wLength is non-zero, then the behavior of the device is not specified.

UnAuthenticated State: If the specified feature selector is WUSB_DEVICE, device behavior when this
request is received while the device is in the UnAuthenticated state is not specified.

 Wireless Universal Serial Bus Specification, Revision 1.1

 158

Default State: If the specified feature selector is WUSB_DEVICE, device behavior when this
request is received while the device is in the Default state is not specified.

Address State: This request is valid in the Addressed state.

Configured State: This request is valid in the Configured state.

Table 7-11. Features Modifiable via SetFeature()

Wireless USB
Feature Selector Description

POWER INDICATION When this feature is set, the device is allowed to send DN_PWR notifications to
the host to indicate its power status. The default value is zero.

7.3.1.5 Set Interface DS
This request is to instruct the device to switch operation to a specified alternate setting for an interface at a
specified time. The host must only send this request to devices that indicate that they support dynamic
switching.

bmRequestType bRequest wValue wIndex wLength Data

00000001B SET_INTERFACE_DS Alternate
Setting

Interface 2 Switch Time

Switch Time is a Wireless USB Channel time with 1/8 of a millisecond granularity. The time indicates when
the interface should switch its operational characteristics to those specified by the alternate setting. This request
is typically used to switch an interface to an alternate setting with different bandwidth requirements for one or
more isochronous endpoints. Isochronous endpoints change their characteristics at the specified time, but do
not flush associated data buffers. An Isochronous IN endpoint starts generating data in the new format at the
specified Wireless USB Channel time (switch time). An Isochronous OUT endpoint assumes that all data
received with presentation times after Switch Time are in the format associated with the specified alternate
setting. The time at which data in the new format begins to be transmitted over the air is unknown when the Set
Interface DS command occurs. The host must send a Set Interface request with the same alternate setting and
interface values to the device when it expects over the air packets to start matching the new interface setting.
See the dataflow chapter for a more detailed description of the use of Set Interface DS.

If the alternate setting specified does not exist the device responds with a request error.

UnAuthenticated State: Device behavior when this request is received while the device is in the
UnAuthenticated is not specified.

Default State: Device behavior when this request is received in the Default state is not specified.

Address State: The device must respond with a request error.

Configured State: This request is valid in the Configured state.

7.3.1.6 Set WUSB Data
This request is required for Wireless USB devices. It is specifically used to update Wireless USB-specific
descriptors and controls.

bmRequestType bRequest wValue wIndex wLength Data

00000000B SET_WUSB_DATA WUSB Data Selector Zero WUSB Data
Length

WUSB
Data

The wValue field specifies a selector value that corresponds to the data or control information. Table 7-12
summarizes the Wireless USB data selectors for items that can be modified on the device via this request.

If wLength is zero, then the behavior of the device is not specified.

If wIndex or wValue are not as specified above, the device responds with a Request Error.

 Wireless Universal Serial Bus Specification, Revision 1.1

 159

UnAuthenticated State: Device behavior when this request is received while the device is in the
UnAuthenticated state is not specified.

Default State: Device behavior when this request is received while the device is in the Default state
is not specified..

Address State: This request is valid in the Addressed state.

Configured State: This request is valid in the Configured state.

Table 7-12. Wireless USB Data Selector Encodings for wValue

wValue Selector Name Description

0000H Reserved This encoding is reserved for future use.

0001H –
0004H

Reserved Reserved and shouldn’t be used in future revisions.

0005H Transmit
Power

This encoding indicates that the WUSB Data contains numeric values
that correspond to the transmit power level that the device must use for
all subsequent notification transmissions. The device uses the highest
power level for all transmissions by default. Table 7-13 illustrates the
format of the WUSB Data for this encoding.

0006H Power
Indication
Levels

This encoding indicates that the WUSB Data contains threshold settings
for the levels at which the device will trigger a device power indication.

0007H Wake Token This encoding indicates that the WUSB Data contains the 128-bit wake
token that the device should use to wake the host during a remote-
wake-poll.

0008H -
FFFFH

 Reserved for future use.

Transmit Power

A host may send this command at any time the device state allows it to be sent. The format of the WUSB Data
for Transmit Power selector is shown in Table 7-13. A device is required to use the new power setting for the
next appropriate packet transmission after the device has transmitted the Status stage handshake to the Set
WUSB Data request.

Table 7-13. Transmit Power WUSB Data Format

Offset Field Size Value Description

0 bTxNotificationTransmitPower 1 Number Value indicating the number of steps
below the highest power level that must
be used for notification transmissions.
The host must use a value that is
supported by the device.

1 Reserved 1 Number Reserved and shouldn’t be used in
future revisions.

Power Indication Levels

A host may send this command at any time the device state allows it to be sent. The format of the WUSB Data
for Power Indication Level selector is shown in Table 7-14. A device is required to use the threshold settings to
trigger the next power indication event after the device has transmitted the Status stage handshake to the Set
WUSB Data request. A Host is not required to set these levels. A device implementation should have proper
default values if it supports low power indication.

Table 7-14. Power Indication Level Data Format

 Wireless Universal Serial Bus Specification, Revision 1.1

 160

Offset Field Size Value Description

0 bWarningLevelThreshold 1 Number Value indicating the percentage of power
remaining in the device which will trigger the
warning level low power indication. The
value 00H is used to disable the indication at
this threshold.

1 bCriticalLevelThreshold 1 Number Value indicating the percentage of power
remaining in the device which will trigger the
critical level low power indication. The value
00H is used to disable the notification at this
threshold.

Wake Token

A host will send this command before stopping the WUSB channel to enable or disable the device’s remote
wake ability. The format of the data is shown in Table 7-15. The use of this command is described in section
4.16.2.2.

Table 7-15. Wake Token WUSB Data Format

Offset Field Size Value Description

0 bEnable 1 Number Indicates whether this device is enabled for waking a
sleeping host.
0 = Disabled. The device must not wake the host.
1 = Enabled. The device may wake the host using the
provided Wake Token value.

1 WakeToken 16 Number Token that the device must use in the Remote Wakeup
ASIE (see section 7.7.7.9) when it wishes to wake the
host

7.3.1.7 Data Loopback Write
This request must be supported by all devices.

bmRequestType bRequest wValue wIndex wLength Data

00000000B LOOPBACK_DATA_WRITE Zero Zero Data Length Data

The data length must be less than or equal to the largest maximum packet size (devMaxPacketSize) of all the
device’s endpoints in any configuration. Device behavior is not specified if the value in wLength is larger than
devMaxPacketSize. The device is required to store the data payload received in the data stage of the request.

For full requirements for the Data Loopback Write command and device behavior with stored loopback data
refer to Section 4.8.4.

If wValue or wIndex are not as specified above, the device behavior is not specified.

UnAuthenticated State: This is a valid request when the device is in the UnAuthenticated state.

Default state: This is a valid request when the device is in the Default state.

Address state: This is a valid request when the device is in the Address state.

Configured state: This is a valid request when the device is in the Configured state for a device that
contains one or more isochronous function endpoints in any of its configurations. For
all other devices, behavior is undefined if this request occurs in the Configured
state.

 Wireless Universal Serial Bus Specification, Revision 1.1

 161

7.3.1.8 DATA Loopback Read
This request must be supported by all devices.

bmRequestType bRequest wValue wIndex wLength Data

10000000B LOOPBACK_DATA_READ Zero Zero Data Length Data

The data length must be less than or equal to the largest maximum packet size (devMaxPacketSize) of all the
device’s endpoints. Device behavior is not specified if the value in wLength is larger than devMaxPacketSize.

For full requirements for the Data Loopback Read command and device behavior with stored loopback data,
refer to Section 4.8.4.

If wValue or wIndex are not as specified above, the device behavior is not specified.

UnAuthenticated State: This is a valid request when the device is in the UnAuthenticated state.

Default state: This is a valid request when the device is in the Default state.

Address state: This is a valid request when the device is in the Address state.

Configured state: This is a valid request when the device is in the Configured state for a device that
contains one or more isochronous function endoints in any of its configurations. For
all other devices, behavior is undefined if this request occurs in the Configured
state.

7.3.2 Security-related Requests
This section describes the Requests defined for the USB Security Framework.

Table 7-16: Security Requests

Request bmRequestType bRequest wValue wIndex wLength Data

GetKey 10000000B GET_DESCRIPTOR Descriptor
Type and
Key Index

Zero Descriptor
Length

Key
Descriptor

SetKey 00000000B SET_DESCRIPTOR Descriptor
Type and
Key Index

Zero Descriptor
Length

Key
Descriptor

Handshake1 00000000B SET_HANDSHAKE One Zero Length of
Handshake
1 Data

Handshake
1 Data

Handshake2 10000000B GET_HANDSHAKE Two Zero Length of
Handshake
2 Data

Handshake
2 Data

Handshake3 00000000B SET_HANDSHAKE Three Zero Length of
Hanshake3
Data

Handshake
3 Data

GetSecurityDescriptor 10000000B GET_DESCRIPTOR Descriptor
Type

Zero Descriptor
Length

Descriptor
Data

SetEncryption 00000000B SET_ENCRYPTION Encryption
Value

Zero Zero None

GetEncryption 10000000B GET_ENCRYPTION Zero Zero One Encryption
Value

SetConnectionContext 00000000B SET_CONNECTION Zero Zero Fourty-
eight

Connection
Context

SetSecurityData 00000000B SET_SECURITY_DATA Data
Number

Zero Data
Length

Security
Data

 Wireless Universal Serial Bus Specification, Revision 1.1

 162

Request bmRequestType bRequest wValue wIndex wLength Data

GetSecurityData 10000000B GET_SECURITY_DATA Data
Number

Zero Data
Length

Security
Data

7.3.2.1 Get Security Descriptor
The host uses this command to retrieve the Security Descriptor and its associated sub-descriptors from the
device.

bmRequestType bRequest wValue wIndex wLength Data

10000000B GET_DESCRIPTOR Descriptor
Type and

Zero

Zero Length of
Descriptor

Security Descriptor

It is a Request Error if wValue or wIndex are other than as specified above. The request is valid for any device
in the Connected device state.

UnAuthenticated State: This is a valid request when the device is in the UnAuthenticated state.

Default State: This is a valid request when the device is in the Default state.

Address State: This is a valid request when the device is in the Addressed state.

Configured State: This is a valid request when the device is in the Configured state.

7.3.2.2 Set Encryption
The host uses this command to set the current device encryption type.

bmRequestType bRequest wValue wIndex wLength Data

00000000B SET_ENCRYPTION Encryption
Value

Zero Zero None

The host uses this command to inform the device of the type of encryption that will be used. The host
determines the types of encryption the device supports by enumerating the security descriptor and its encryption
type descriptors. The host also uses this request to enable CCM encryption on the device before beginning the
4-way handshake.

Encryption Value comes from one of the Encryption Type descriptors contained in the Security Descriptor. A
value of Zero in this field is undefined. The request is valid for any device in the Connected device state. All
the keys that the device has remain valid until the device transitions to the UnAuthenticated state. The device
must continue to use the encryption type that is set via this command until the device transitions to the
UnConnected state.

It is a Request Error if Encryption Value does not represent a valid encryption type.

It is a Request Error to attempt to set WIRED as the current encryption type.

It is a Request Error if wValue or wIndex are other than as specified above.

UnAuthenticated State: This is a valid request when the device is in the UnAuthenticated state.

Default State: This is a valid request when the device is in the Default state.

Address State: This is a valid request when the device is in the Address state.

Configured State: This is a valid request when the device is in the Configured state.

7.3.2.3 Get Encryption
The host uses this command to get the current device encryption type.

 Wireless Universal Serial Bus Specification, Revision 1.1

 163

bmRequestType bRequest wValue wIndex wLength Data

10000000B GET_ENCRYPTION Zero Zero One Encryption Value

Encryption Value comes from one of the Encryption Type descriptors contained in the Security Descriptor.

A wired/wireless device always returns WIRED if it connected with a cable.

It is a Request Error if wValue or wIndex are other than as specified above.

UnAuthenticated State: This is a valid request when the device is in the UnAuthenticated state.

Default State: This is a valid request when the device is in the Default state.

Address State: This is a valid request when the device is in the Address state.

Configured State: This is a valid request when the device is in the Configured state.

7.3.2.4 Key Management
This section describes the requests that are related to key management.

The Security Framework uses Key Indices in both descriptors and requests. These values are used to specify
individual keys. The Key Index has the following layout:

Table 7-17: Key Index definition

Bit Description

0-3 Index: Allows selection of one of several of the same type
of key.

4-5 Type: Specifies the type of key:
0 = Reserved
1 = Association Key

2 = GTK

3 = Reserved for future use

6 Originator: specifies original source of the key:
0 = Host
1 = Device

7 Reserved for future use

Devices may use the index field to select between multiple device-originated authentication keys.

Host-originated public keys use an index of zero (0).

7.3.2.4.1 Set Key
The host uses this command to distribute GTKs and host association keys. When Set Key is being used to give
an initial GTK to a device, the device must initialize the replay counter associated with this GTK to the SFC
value used in the secure encapsulation of the MMC where the Setup command bytes for this command are
located. To support this, the host is required to deliver the currently active GTK to a device as its initial GTK.

bmRequestType bRequest wValue wIndex wLength Data

00000000B SET_DESCRIPTOR Descriptor
Type and
Key Index

Zero Descriptor
Length

Key Descriptor

When the device receives this command, it uses the key data in the accompanying descriptor to update its copy
of the key specified by Key Index. The request is valid for any device in the Connected device state. This
request may not be used to distribute new PTKs. PTKs are only distributed using the 4-way Handshake.

It is a Request Error if wIndex or wValue are other than as specified above.

 Wireless Universal Serial Bus Specification, Revision 1.1

 164

It is a Request Error if key originator=device.

UnAuthenticated State: This is a valid request when the device is in the UnAuthenticated state.

Default State: This is a valid request when the device is in the Default state.

Address State: This is a valid request when the device is in the Addressed state.

Configured State: This is a valid request when the device is in the Configured state.

7.3.2.4.2 Get Key
The host uses this request to get key descriptors from the device.

bmRequestType bRequest wValue wIndex wLength Data

10000000B GET_DESCRIPTOR Descriptor
Type and
Key Index

Zero Descriptor
Length

Key Descriptor

When the device receives this command, it uses Key Index to reference the appropriate key. The request is
valid for any device in the Connected device state.

It is a Request Error if wValue or wIndex are other than as specified above.

It is a Request Error if Key Index refers to a non-existent key.

It is a Request Error if Key Index specifies any key type other than a public key

UnAuthenticated State: This is a valid request when the device is in the UnAuthenticated state.

Default State: This is a valid request when the device is in the Default state.

Address State: This is a valid request when the device is in the Address state.

Configured State: This is a valid request when the device is in the Configured state.

7.3.2.5 4-Way Handshake
This series of requests are used to establish a 4-way handshake between host and device. This 4-way handshake
provides a means for the host and device to perform mutual authentication using the Connection Key while
simultaneously deriving the initial PTKs.

The host always assumes an Initiator role in the 4-way handshake while the device always assumes the role of
responder. During the 4-way handshake, the host and device exchange 128-bit cryptographic grade random
numbers. These numbers are assembled and processed as described in the Security chapter.

The device must expect the individual handshake requests in order: Handshake1, Handshake2 and Handshake3.
If a device receives a Handshake1 while it is processing or waiting for a Handshake2 or Handshake3 request, it
must abort the handshake in progress and start again with the newly received Handshake1 request. If the device
receives an unexpected handshake request, it must report a request error to the host. The format of the
Handshake data for all Handshake requests is given in Table 7-18.

Table 7-18. Format of Handshake Data for the Handshake Commands

Offset Field Size Value Description

0 bMessageNumber 1 Number Defines which stage this data payload is
associated with. Valid values are:

1 Handshake1

2 Handshake2

3 Handshake3

1 bStatus 1 Number 0 Normal, the handshake sequence
proceeds

 Wireless Universal Serial Bus Specification, Revision 1.1

 165

Offset Field Size Value Description

1 Aborted per security policy

2 Aborted, handshake in progress
with same master key

3 Aborted, TKID conflict

2 tTKID 3 Number The base name for the PTK to be derived

5 bReserved 1 Constant Reserved for future use; Must be zero

6 CDID 16 Number The device’s CDID. Note, this
corresponds to the MKID used by the
MAC Layer, see reference [3]

22 Nonce 16 NONCE The Nonce being exchanged for the
handshake

38 MIC 8 Number The MIC calculated over the previous
fields of this packet payload. The value of
this field for Handshake1 is zero.

The host establishes the TKID to be used with PTK by declaring this value in the Handshake1 data payload.
This value is maintained throughout the handshake sequence. If the host or device receives a handshake payload
with a different TKID, the payload should be discarded.

The last 4-way handshake message, Handshake3, is an instruction to install the freshly derived PTK. Upon
completion of the status stage of a Handshake3 request, the device should install the derived PTK, enable CCM
cryptographic operations and prepare for receipt of secured traffic.

The host may begin a 4-Way Handshake sequence anytime it decides the connection requires re-authentication.
The individual 4-Way Handshake requests are valid in all sub-states of the Connected device state.

The data and status stages of the individual 4-Way Handshake requests are always sent without secure packet
encapsulation, i.e. they are sent in plain-text.

The host must make sure the correct security suite is enabled on the device before beginning a 4-way
handshake. It does this by using SetEncryption() to enable CCM encryption.

7.3.2.5.1 Handshake1
The host uses this request to begin the 4-way handshake procedure with a device.

bmRequestType bRequest wValue wIndex wLength Data

00000000B SET_HANDSHAKE One Zero 46 Handshake1 Data

This command is used to initiate the 4-way handshake sequence. The host starts the process by sending a key
name and a 16-byte cryptographic grade random number, HNonce, to the device. The format of the
Handshake1 data is given in Table 7-18.

It is a Request Error if wValue or wIndex are other than as specified above.

UnAuthenticated State: This is a valid request when the device is in the UnAuthenticated state.

Default State: This is a valid request when the device is in the Default state.

Address State: This is a valid request when the device is in the Address state.

Configured State: This is a valid request when the device is in the Configured state.

7.3.2.5.2 Handshake2
The host uses this request to retrieve the second 4-way handshake from the device.

bmRequestType bRequest wValue wIndex wLength Data

 Wireless Universal Serial Bus Specification, Revision 1.1

 166

10000000B GET_HANDSHAKE Two Zero 46 Handshake2 Data

The host uses this request to retrieve a 16-byte cryptographic grade random number from the device, DNonce,
and to validate that the device has derived the correct keys. The format of Handshake 2 Data is given in Table
7-18.

It is a Request Error if wValue or wIndex are other than as specified above.

UnAuthenticated State: This is a valid request when the device is in the UnAuthenticated state.

Default State: This is a valid request when the device is in the Default state.

Address State: This is a valid request when the device is in the Address state.

Configured State: This is a valid request when the device is in the Configured state.

7.3.2.5.3 Handshake3
The host uses this request to instruct the device to install the derived key.

bmRequestType bRequest wValue wIndex wLength Data

00000000B SET_HANDSHAKE Three Zero 46 Handshake3 Data

This request combines message 3 and message 4 of a 4-way handshake. The data stage of this request contains
the host’s message 3. The status stage of this request serves as the device response message 4. The format of
the Handshake3 data is given in Table 7-18.

It is a Request Error if wValue or wIndex are other than as specified above.

UnAuthenticated State: This is a valid request when the device is in the UnAuthenticated state.

Default State: This is a valid request when the device is in the Default state.

Address State: This is a valid request when the device is in the Address state.

Configured State: This is a valid request when the device is in the Configured state.

7.3.2.5.4 Set Connection Context
The host uses this command to modify a device’s Connection Context.

bmRequestType bRequest wValue wIndex wLength Data

00000000B SET_CONNECTION Zero Zero 48 Connection
Context

This command is used to modify the current device connection values for CHID, CDID, and CK. A Connection
Context must always be protected during delivery.

A host can also use this command to revoke a context. It does this by setting a context with zero values for
CHID and CDID. Any device with a current CDID value of zero must be associated with a host before
reconnections can be made.

Table 7-19. Format of Connection Context

Name Size Description

Connection Host ID (CHID) 16 bytes Unique Host ID. The device uses this ID to locate the
host’s Wireless USB Channel.

Connection Device ID (CDID) 16 bytes Unique Device ID. This ID uniquely identifies the device to
the host specified by CHID. It is not guaranteed to be
unique across multiple hosts.

Connection Key (CK) 16 bytes The key used to establish reconnections using this context.
This key should be changed periodically.

 Wireless Universal Serial Bus Specification, Revision 1.1

 167

It is a Request Error if wValue or wIndex are other than as specified above.

UnAuthenticated State: This is a valid request in the UnAuthenticated state only after encryption is enabled.
This may be as a result of a 4-way handshake/SetKey(GTK) or other authentication
protocols tied to New Connection.

Default State: This is a valid request when the device is in the Default state.

Address State: This is a valid request when the device is in the Address state.

Configured State: This is a valid request when the device is in the Configured state.

7.3.2.6 Set Security Data
The host uses this command to pass in-band authentication messages and data to the device.

bmRequestType bRequest wValue wIndex wLength Data

00000000B SET_SECURITY_DATA Data Number Zero Data Length Security Data

This command provides a wrapper for in-band authentication messages and data sent from the host to the
device. Data Number represents a stage or message number, defined by the authentication protocol, this data
piece is associated with. The request is valid for any device that has requested a New Connection.

It is a Request Error if Data Number does not represent a valid authentication-protocol designated value.

It is a Request Error if wValue or wIndex are other than as specified above.

UnAuthenticated State: This is a valid request when the device is in the UnAuthenticated state.

Default State: Device behavior when this request is received while the device is in the Default state
is not specified.

Address State: Device behavior when this request is received while the device is in the Address
state is not specified.

Configured State: Device behavior when this request is received while the device is in the Configured
state is not specified.

7.3.2.7 Get Security Data
The host uses this command to retrieve in-band authentication methods and data from the device.

bmRequestType bRequest wValue wIndex wLength Data

10000000B GET_SECURITY_DATA Data Number Zero Data Length Security Data

This command provides a wrapper for in-band authentication messages and data sent from device to host. Data
Number represents a stage or message number, defined by the authentication protocol, this data piece is
associated with. The request is valid for any device that has requested a New Connection.

It is a Request Error if Data Number does not represent a valid authentication-protocol designated value.

It is a Request Error if wValue or wIndex are other than as specified above.

UnAuthenticated State: This is a valid request when the device is in the UnAuthenticated state.

Default State: Device behavior when this request is received while the device is in the Default state
is not specified.

Address State: Device behavior when this request is received while the device is in the Address
state is not specified.

Configured State: Device behavior when this request is received while the device is in the Configured
state is not specified.

 Wireless Universal Serial Bus Specification, Revision 1.1

 168

7.4 Standard Wireless USB Descriptors
All devices must support the required set of standard device descriptors defined in USB 2.0, chapter 9. All
standard device descriptors are available once the device is in the Connected device state (see Section 7).
Wireless USB defines several changes to some of the standard descriptors defined in USB 2.0, see the summary
in Table 7-20. This specification includes only the USB 2.0 defined descriptors that are modified by the
Wireless USB specification.

Table 7-20. Summary of Changes to USB 2.0 Defined Standard Descriptors

Descriptor Type Wireless
USB Delta

Explanation

DEVICE No change No change to the base descriptor, except for the
version number in bcdUSB field, Wireless USB
also requires an additional standard device-level
capabilities descriptor, see section 7.4.1.

CONFIGURATION Changes Updates required for Wireless USB. See Section
7.4.2.

STRING No change

INTERFACE No change

ENDPOINT Changes Updates required for Wireless USB. Also require
extensions to endpoint capabilities which utilize a
companion descriptor, see Section 7.4.4.

DEVICE_QUALIFIER n/a Not allowed for a Wireless USB device

OTHER_SPEED_CONFIGURATION n/a Not allowed for a Wireless USB device

INTERFACE_POWER n/a Not allowed for a Wireless USB device

OTG n/a Not allowed for a Wireless USB device

DEBUG No Change See Debug device specification
http://developer.intel.com/technology/usb/spec.htm

INTERFACE_ASSOCIATION No change

The USB 2.0 specification [1], Section 9.4 lists the standard descriptor types. Table 7-21 is the list of additional
descriptor types and assigned descriptor type values for Wireless USB.

Table 7-21. Wireless USB Standard Extension Descriptor Types

Descriptor Types Value Section Reference

SECURITY 12 Section 7.4.5.1

KEY 13 Section 7.4.5.2

ENCRYPTION TYPE 14 Section 7.4.5.1.1

BOS 15 Section 7.4.1

DEVICE CAPABILITY 16 Section 7.4.1

WIRELESS_ENDPOINT_COMPANION 17 Section 7.4.2

7.4.1 Device Level Descriptors
The Device descriptor describes general information about a USB device. Please refer to Section 9.6.1 of the
USB 2.0 specification for a full description of the Device descriptor. The bMaxPacketSize0 field is the only
field in the standard device descriptor with a different requirement than that documented in the USB 2.0.
Wireless USB requires the bMaxPacketSize0 field to be set to FFH (see Section 4.8.1). In addition, devices that
conform to this revision of the Wireless USB specification must have the value of 0250H in the bcdUSB field.
Additional device-level information for devices is contained in the BOS descriptor, see below.

 Wireless Universal Serial Bus Specification, Revision 1.1

 169

This section defines a flexible and extensible framework for describing and adding device-level capabilities to
the set of USB standard specifications. As mentioned above, there exists a device descriptor, but all device-level
capability extensions are defined using the following framework.

The BOS descriptor (Binary device Object Store, see Table 7-22) defines a root descriptor that is similar to the
configuration descriptor, and is the base descriptor for accessing a family of related descriptors. A host can read
a BOS descriptor and learn from the wTotalLength field the entire size of the device-level descriptor set, or it
can read in the entire BOS descriptor set of device capabilities. The host accesses this descriptor using the
GetDescriptor() request. The descriptor type in the GetDescriptor() request is set to BOS (see Table 7-22).
There is no way for a host to read individual device capability descriptors. The entire set can only be accessed
via reading the BOS descriptor with a GetDescriptor() request and using the length reported in the
wTotalLength field.

Table 7-22. BOS Descriptor

Offset Field Size Value Description

0 bLength 1 Number Size of this descriptor.

1 bDescriptorType 1 Constant Descriptor type: BOS.

2 wTotalLength 2 Number Length of this descriptor and all of its sub
descriptors.

4 bNumDeviceCaps 1 Number The number of separate device capability
descriptors in the BOS.

Individual, technology-specific or generic device-level capabilities are reported via Device Capability
descriptors. The format of the Device Capability descriptor is defined in Table 7-23. The Device Capability
descriptor has a generic header, with a sub-type field (bDevCapabilityType) which defines the layout of the
remainder of the descriptor. The codes for bDevCapabilityType are defined in Table 7-24.

Table 7-23. Format of a Device Capability Descriptor

Offset Field Size Value Description

0 bLength 1 Number Size of this descriptor.

1 bDescriptorType 1 Constant Descriptor type: DEVICE CAPABILITY Type.

2 bDevCapabilityType 1 Number Valid values are listed in Table 7-24.

3 Capability-
Dependent

VAR Variable Capability-specific format.

Device Capability descriptors are always returned as part of the BOS information returned by a
GetDescriptor(BOS) request. A Device Capability cannot be directly accessed with a GetDescriptor() or
SetDescriptor() request.

Table 7-24. Device Capability Type Codes

Capability Code Value Description

Wireless_USB 01H Defines the set of Wireless USB-specific device level capabilities.

Wireless_USB_Ext 02H Defines the set of Wireless USB 1.1-specific device level
capabilities.

Reserved 00H, 03-FFH Reserved for future use.

The following section(s) define the specific device capabilities.

7.4.1.1 Wireless USB Device Capabilities – UWB
This section defines the required device-level capabilities descriptor which must be implemented by all
Wireless USB devices. Wireless USB Device Capabilities – UWB descriptors cannot be directly accessed with
a GetDescriptor() or SetDescriptor() request.

 Wireless Universal Serial Bus Specification, Revision 1.1

 170

Table 7-25. Wireless USB Device Capabilities on UWB Descriptor

Offset Field Size Value Description

0 bLength 1 Number Size of this descriptor.

1 bDescriptorType 1 Constant Descriptor type: DEVICE CAPABILITY Type.

2 bDevCapabilityType 1 Constant Capability type: WIRELESS USB.

3 bmAttributes 1 Bitmap Bitmap encoding of supported device level features.
A value of one in a bit location indicates a feature is
supported; a value of zero indicates it is not
supported. Encodings are:
Bit Encoding
0 Reserved. Must be set to zero.
1 P2P-DRD. A value of one in this

bit location indicates that this
device is Peer to Peer DRD
capable.

3:2 Beacon Behavior. This field
encodes the beaconing behavior
of the device. The encoded
values are:
Value Description
00B Reserved.
01B Self-Beacon
10B Reserved and

shouldn’t be used in
future revisions.

11B Reserved and
shouldn’t be used in

future revisions.

4 Power Indication. A value of one
in this bit indicates that this
device supports Power Indication
and power status probing
function.

7:5 Reserved. Must be set to zero.

4 wPHYRates 2 Bitmap Describes the PHY-level signaling rate capabilities
of this device implementation represented as a bit-
mask. Bit positions are assigned to speed
capabilities possible in a PHY implementation. A ‘1’
in a bit position indicates the associated data rate is
supported by the device. Encodings are:

Bit Data Rate (Mbps)
0 53.3 **required
1 80
2 106.7 **required
3 160
4 200 **required
5 320
6 400
7 480
15:8 Reserved. Must be zero.

** Required encodings must be a one (1B).

 Wireless Universal Serial Bus Specification, Revision 1.1

 171

Table 7-25. Wireless USB Device Capabilities on UWB Descriptor (cont.)

Offset Field Size Value Description

6 bmTFITXPowerInfo 1 Bitmap This bit mask reports the PHY transmit power levels
supported by this device when transmitting on a TFI
channel. See below for details.

Bit Encoding
3:0 Power Level Steps. Specifies

the number of steps from the
base TFI transmit power level
supported by the device.

7:4 Step Size. The value specifies
the number of dB between
supported power levels as
follows:
Value Step Size (dB)
0 1.0
1 1.25
2 1.5
3 1.75
4 2.0
5 2.25
6 2.5
7 2.75
8 3.0
9 3.25
10 3.5
11 3.75
12 4.0
13 4.25
14 4.5
15 4.75

7 bmFFITXPowerInf
o

1 Bitmap This bit mask reports the PHY transmit power levels
supported by this device when transmitting on an
FFI channel. The encoding of this field is identical to
the bmTFITXPowerInfo field. See below for details.

8 bmBandGroup 2 Bitmap This bit map reports which UWB band groups are
supported by this implementation. See below for
details.

10 bReserved 1 Zero Reserved for future use, must be zero

The fields bmFFITXPowerInfo and bmTFITXPowerInfo report the PHY transmit power levels supported by the
device. The fields report the step size between power levels and the number of steps supported. This
information can be used in the Set WUSB Data request to set the devices’ maximum transmit power for various
types of packets transmitted by the device to the Wireless USB channel. The power level for data packets is set
by the bmTXAttributes Transmit Power field in a WDTCTA, see Section 5.2.1.2. The host must use only those
power levels reported by this descriptor. See Section 4.10.1 for detailed information and additional
requirements on TPC.

The field bmBandGroup is a bit mask that reports which UWB band groups are supported by this
implementation. A 1B in a bit position indicates all of the bands and channels in the associated PHY bandgroup
are supported (i.e. a 1B in bit position 0 indicates that all bands in band group one are supported). Devices
compliant to 1.1 version of this specification are required to support bandgroup 3 or bandgroup 6, depending on
the specific regulatory domain they are used. Support of bandgroup one (0001H) is optional. If a device
declares support of a band group, it must support all channels in the same band group, per national regulations.

 Wireless Universal Serial Bus Specification, Revision 1.1

 172

At this time, 6 bandgroups are defined, therefore bits [15:5] are reserved. For full details on the PHY, refer to
reference [4].

7.4.1.2 Extended Wireless USB Device Capabilities – UWB
This section defines the required extended device-level capabilities descriptor which must be implemented by
all Wireless USB 1.1 devices. Extended Wireless USB Device Capabilities – UWB descriptors cannot be
directly accessed with GetDescriptor() or SetDescriptor() request. The presence of this descriptor serves to
identify a device as being Wireless USB 1.1 conformant.

Table 7-26. Wireless USB Device Capabilities on UWB Descriptor

Offset Field Size Value Description

0 bLength 1 Number Size of this descriptor.

1 bDescriptorType 1 Constant Descriptor type: DEVICE CAPABILITY Type.

2 bDevCapabilityType 1 Constant Capability type: WIRELESS USB_EXT.

3 wIdleTimeout 2 Value Time interval, in units of milliseconds, from
the instant there are no active transfers to a
device until the host decides to send the
Device Sleep IE to the device.

5 wWakeUpLatency 2 Value Time interval, in units of milliseconds, during
which the device prefers to remain in the
Sleep state, if directed to sleep by the host.

7 bmControl 1 Bitmap Bit Encoding

0 A value of 0 indicates that the
host should strictly use the
device provided values of
wIdleTimeout and
wWakeUpLatency when
directing a device to sleep.
A value of 1 indicates that the
host is free to choose when to
direct a device to transition to
the sleep state and how long
the device should remain in the
sleep state.

7:1 Reserved

The fields wIdleTimeout, wWakeUpLatency and bmControl are used by the host when directing a device to
sleep. The details are described in Section 4.16.1.2

7.4.2 Configuration
The configuration descriptor describes information about a specific device configuration. Please refer to
Section 9.6.3 of the USB 2.0 specification for a full description of the Configuration descriptor. The descriptor
is included in its entirety below (for completeness). The Wireless USB specific additions/requirements are
documented in the description column of Table 7-27.

Table 7-27. Standard Configuration Descriptor

Offset Field Size Value Description

0 bLength 1 Number Refer to Table 9-10 in Section 9.6.3 in the USB 2.0
specification for a full description.

1 bDescriptorType 1 Constant

 Wireless Universal Serial Bus Specification, Revision 1.1

 173

Offset Field Size Value Description

2 wTotalLength 2 Number

4 bNumInterfaces 1 Number

5 bConfigurationValue 1 Number

6 iConfiguration 1 Index

7 bmAttributes 1 Bitmap Configuration characteristics

 D7: Reserved (set to one)
 D6: Self-powered
 D5: Remote Wakeup
 D4 Battery-powered
 D3...0: Reserved (reset to zero)

D7 is reserved and must be set to one for historical
reasons.

All attributes are available for a USB 2.0 device
implementation.

A Wireless USB device must always set Self-
powered (D6) to a one (1B).

If a device configuration supports remote wakeup,
D5 is set to one.

8 bMaxPower 1 mA A Wireless USB device must always set this field to
zero.

7.4.3 Endpoint
The purpose and function of the endpoint descriptor is the same as defined in the USB 2.0 specification, see
Section 9.6.6. This section describes the requirement modifications to the endpoint descriptor required for
Wireless USB. The entire descriptor from the USB 2.0 specification is repeated here for convenience, with the
explicit changes for Wireless USB identified. In addition, Wireless USB defines an Endpoint Companion
descriptor for endpoint capabilities required for Wireless USB, that would not fit inside the existing endpoint
descriptor footprint.

A Wireless USB endpoint descriptor must not be used in a USB 2.0 (wired) device configuration.

 Wireless Universal Serial Bus Specification, Revision 1.1

 174

Table 7-28. Standard Endpoint Descriptor for Wireless USB Devices

Offset Field Size Value Description

0 bLength 1 Number Size of this descriptor in bytes

1 bDescriptorType 1 Constant ENDPOINT Descriptor Type

2 bEndpointAddress 1 Endpoint The address of the endpoint on the USB device described
by this descriptor. The address is encoded as follows:

Bits Description
3:0 The endpoint number
6:4 Reserved and must be set to zero
7 Direction (ignored for Control endpoints)

0B OUT endpoint
1B IN endpoint

 Wireless Universal Serial Bus Specification, Revision 1.1

 175

3 bmAttributes 1 Bitmap This field describes the endpoint’s attributes when it is configured
using the bConfigurationValue.

Bits Description
1:0 Transfer type. Values have the following

encoding:
00B Control
01B Isochronous
10B Bulk
11B Interrupt

6:2 This field is reserved and must be set to
zero if the Transfer Type field is Control
or Bulk.
If the Transfer Type field is Interrupt,
then this field has the following encoding:

Bits Meaning
2 Mode

0B Normal power
interrupt endpoint

1B Low power interrupt
endpoint

3 Reserved. Must be zero.
5:4 Usage type

00B Periodic
01B Notification
10B Reserved
11B Reserved

6 Reserved. Must be zero.
If the Transfer Type field is Isochronous,
then this field has the following encoding:

Bits Meaning
3:2 Synchronization type

00B No Synchronization
01B Asynchronous
10B Adaptive
11B Synchronous

5:4 Usage type
00B Data endpoint
01B Feedback endpoint
10B Implicit feedback

endpoint
11B Reserved

6 Reserved. Must be zero.

7 Data packet size adjustment flag. This bit
must be set to zero for Control and
Isochronous endpoints.

0B Data packet size adjustment
not supported

1B Data packet size adjustment
supported

 Wireless Universal Serial Bus Specification, Revision 1.1

 176

Table 7-28. Standard Endpoint Descriptor for Wireless USB Devices (cont.)

Offset Field Size Value Description

4 wMaxPacketSize 2 Number When transfer type is bulk, control or interrupt:
Maximum packet size this endpoint is capable of
sending or receiving when this configuration is
selected. If the transfer type is isochronous the value
of this field is the logical maximum packet size.
Note 1: If there are no software compatibility issues
using the wOverTheAirPacketSize, the
wMaxPacketSize must be set to the same value as
wOverTheAirPacketSize.
Note 2: If this is a continuously scalable dynamic
switching capable isochronous endpoint then this field
must be set to the largest value that this endpoint can
support. System software will not reserve any
bandwidth for this endpoint until the driver for the
DWA requests that system software reserve
bandwidth using a SetISOEPAttributes call.
Note 3: for all endpoints, bits [15:0] specify the
maximum packet size (in bytes). Note that each
endpoint transfer type has additional constraints
defined that limit the valid range of values for this
field. See Chapter 4.Error! Reference source not
found. For additional details.

6 bInterval 1 Number When the transfer type is bulk or control, this field is
reserved and must be set to zero.
For interrupt endpoints, the bInterval value is used as
the exponent for a 2bInterval-1 value; e.g., a bInterval of
6 means a period of 32 (26-1) units of 128
microseconds.
For wireless interrupt endpoints this value must be
from 6 to 16.
Note: Not all service interval bounds in this range
may be achievable. See Section 4.11.2.2 for details.
For isochronous endpoints the value of this field is
the logical service interval. This field allows
isochronous endpoints to report a different value than
bOverTheAirInterval to software for legacy
compatibility reasons. The encoding is identical to
the USB 2.0 specification encoding for FS/HS
isochronous endpoints. Namely, the logical service
interval value must be in the range 1 to 16 and is in
units of 125 microseconds.
For a continuously scalable dynamic switching
capable isochronous endpoint this field must be set
to the fastest rate at which the endpoint can be
serviced.

The bmAttributes field has several changes from the definition in the USB 2.0 specification. These are
enumerated below:

 Bits [6:2] are interpreted based on the value of the Transfer Type field. They are reserved and must be zero
if Bulk or Control.

 Bit [2] for an Interrupt type endpoint flags whether the endpoint is a normal or low-power type
endpoint (see Section 4.6).). Bits [5:4] define the usage type for an interrupt type endpoint. Bit [3] and
bit [6] are reserved and must be set to zero. The usage type indicates whether the endpoint is used for

 Wireless Universal Serial Bus Specification, Revision 1.1

 177

infrequent notifications that can tolerate varying latencies or, it regularly transfers data in consecutive
service intervals or is dependent on bounded latencies.

 For Isochronous, the purpose of bits [5:2] remains unchanged from USB 2.0.5 Bit [6] is reserved and
must be set to zero.

 Bit [7] applies to all transfer types and indicates whether the endpoint supports data burst packet maximum
packet size adjustments for PER see Section 4.10.2.

7.4.4 Wireless USB Endpoint Companion
Each Wireless USB endpoint described in an interface must have a Wireless USB Endpoint Companion
descriptor. This descriptor contains additional endpoint characteristics that are only defined for Wireless USB
endpoints. A Wireless USB Endpoint Companion descriptor for each Wireless USB endpoint is always
returned as part of the configuration information returned by a GetDescriptor(Configuration) request. A
Wireless USB Endpoint Companion descriptor cannot be directly accessed with a GetDescriptor() or
SetDescriptor() request. There is never a Wireless USB Endpoint Companion descriptor for endpoint zero. The
Wireless USB Endpoint Companion descriptor must immediately follow the endpoint descriptor it is associated
with in the configuration information.

Table 7-29. Wireless USB Endpoint Companion Descriptor

Offset Field Size Value Description

0 bLength 1 Number Size of this descriptor in bytes

1 bDescriptorType 1 Constant WIRELESS_ENDPOINT_COMPANION
Descriptor Type

2 bMaxBurst 1 Number The maximum number of packets the endpoint
can send or receive as part of a burst. The
value is a number from 1 to 16.
For a continuously scalable dynamic switching
capable isochronous endpoint this field must be
set to the max burst the endpoint can support.
Refer to Sections 4.5, 4.6, 4.7 and 4.8 for more
information and maximum values for each
endpoint type.

3 bMaxSequence 1 Number The maximum sequence used for data bursting.
Valid values are in the range 2 to 32. The
maximum sequence number value used on the
endpoint is bMaxSequence -1.
Section 5.4 Details how this value is used for
data bursting and Sections 4.5 Through 4.8
Provides information on constraints per transfer
type.

5 Warning: Acceptable response timeouts for feedback endpoints may be significantly longer than wired USB 2.0.

 Wireless Universal Serial Bus Specification, Revision 1.1

 178

Offset Field Size Value Description

4 wMaxStreamDelay 2 Number For isochronous endpoints this field is a value
from 1 to 65535 indicating the maximum amount
of delay in 125 microsecond units that can be
supported by the stream. The endpoint must
provide exactly the amount of buffering to
support this delay. An IN endpoint must be able
to store this amount of data before having to
discard data. An OUT endpoint must be able to
fill its buffering (except for storage for less than
a maximum size burst) before it is allowed to
NAK.
Refer to the dataflow Section 4.11 for more
information.
For interrupt, bulk, and control endpoints this
field is reserved and must be zero.

6 wOverTheAirPacketSize 2 Number If the transfer type is isochronous:
Maximum packet size this endpoint is capable
of sending or receiving over the air when this
configuration is selected.
If the transfer type is bulk, interrupt, or control
this field is reserved and must be set to zero.
See Section 4.8.4.

8 bOverTheAirInterval 1 Number This field is the interval for polling the
isochronous endpoint.
The bOverTheAirInterval value is used as the
exponent for a 2bOverTheAirInterval-1 value; e.g., a
bInterval of 6 means a period of 32 (26-1) units
of 128 microseconds. See Section 4.7.2
A continuously scalable dynamic switching
capable isochronous endpoint specifies zero for
the bOverTheAirInterval value and must support
any interval.
If the transfer type is bulk, interrupt, or control,
this field is reserved and must be set to zero.

 Wireless Universal Serial Bus Specification, Revision 1.1

 179

Table 7-29. Wireless USB Endpoint Companion Descriptor (cont.)

Offset Field Size Value Description

9 bmCompAttributes 1 BitMap Attributes of the endpoint companion descriptor:

Bits Description

1:0 Dynamic Switching:
If the Transfer Type field is
Isochronous, then this field has the
following encoding:

00B No dynamic
switching

01B Dynamic switching

10B Dynamic switching
and continuously
scalable

11B Reserved

This field indicates whether the
interface containing the endpoint
supports dynamic switching and
whether it is continuously scalable.
If the endpoint supports dynamic
switching (but is not continuously
scalable) the interface containing
the endpoint can be dynamically
switched between alternate settings
using the process described in
Section 4.10.6.
If the endpoint is continuously
scalable it can support any packet
size up to the reported
wMaxPacketSize and any interval.
Device specific out of band
mechanisms must be used to
change the maximum packet size or
interval. See Section 8.1.16.14 for
an example of the use of
continuously scalable endpoints.
A continuously scalable dynamic
switching endpoint does not receive
a bandwidth reservation when its
associated interface is selected.
This field is reserved and must be
set to zero when the Transfer Type
field is Bulk, Control or Interrupt.

7:2 Reserved and must be set to zero

Note: refer to Section 4.10.6 for behavioral requirements for Dynamic Switching.

For isochronous endpoints, bMaxBurst and wOverTheAirPacketSize are used to reserve the average bus time in
the schedule, required for the data payloads each bOverTheAirInterval. This value should indicate the average
actual bandwidth required by the endpoint if no errors occur. Appropriate additional opportunities for retries
are automatically scheduled by the host. wOverTheAirPacketSize may be some multiple of wMaxPacketSize in
order to improve the on-air efficiency of isochronous transfers. wMaxPacketSize and bInterval from the
endpoint descriptor describe the rate at which data are sourced or sunk by the endpoint whereas
wOvertheAirPacketSize and bOverTheAirInterval describe the rate at which the data are transferred over the
air.

 Wireless Universal Serial Bus Specification, Revision 1.1

 180

7.4.5 Security-Related Descriptors
This section describes the descriptors that are used by USB Security.

7.4.5.1 Security Descriptor
The Security Descriptor describes the Security capabilities of the device. The capabilities of the host are never
advertised to the device. The host will select the appropriate device mode.

The Security Descriptor functions similarly to a Configuration Descriptor. It serves as a general container for
the other descriptors that describe the device security properties in detail. It is done as a container so that new
descriptors may be added as new encryption methods are employed or breaches are repaired.

The Security Descriptor and its contained payload is directly addressable using the Get Descriptor request,
specifying the descriptor type as SECURITY. This is done so that the Security Descriptor information can be
enumerated by a host in plain text without revealing any other descriptor information.

Key descriptors are not returned as part of the Security descriptor. Keys referenced in the Encryption Type
descriptors can be read via the Get Key request.

Table 7-30: Security Descriptor

Offset Field Size Value Description

0 bLength 1 Number Number of bytes in this descriptor, including this
byte

1 bDescriptorType 1 Constant Descriptor Type: SECURITY Descriptor

2 wTotalLength 2 Number Length of this descriptor and all sub-descriptors
returned

4 bNumEncryptionTypes 1 Number Number of supported encryption types

7.4.5.1.1 Encryption Type Descriptor
The Security Descriptor payload can contain multiple Encryption Type descriptors. It should contain one for
each mode supported.

The field bEncryptionType selects one of the encryption types defined in Table 7-32. The field
bEncryptionValue specifies the value that should be used with Set Encryption in order to enable this type of
encryption.

The device indicates that it can use this encryption type for New Connection authentication by supplying a valid
Key Index in the bAuthKeyIndex field. This Key Index must reference a valid device key, i.e.
Originator=Device, Type=Authentication.

The host enumerates the device’s encryption type descriptors to determine what encryption suites the device
supports. It does this by examining the bEncryptionType field of the descriptor to identify the type of security.
When the desired descriptor is located, the host uses the bEncryptionValue field from the descriptor as the
parameter to the Set Encryption request.

 Wireless Universal Serial Bus Specification, Revision 1.1

 181

Table 7-31: Encryption Type Descriptor

Offset Field Size Value Description

0 bLength 1 Number Number of bytes in this descriptor, including this
byte

1 bDescriptorType 1 Constant Descriptor Type: ENCRYPTION TYPE
Descriptor

2 bEncryptionType 1 Number Type of encryption (See Table 7-32)

3 bEncryptionValue 1 Number Value to use with Set Encryption

4 bAuthKeyIndex 1 Key Index Non-zero if this encryption type can be used for
New connection authentication. In this case the
value specifies the Key Index to use for
authentication.

Table 7-32: USB Encryption Types

Encryption Types Value Description

 0 Reserved

WIRED 1 Virtual encryption provided by the wire

CCM_1 2 AES-128 in CCM mode

Reserved 3 Reserved and shouldn’t be used in future revisions.

Reserved 4-255 Reserved for future use

7.4.5.2 Key Descriptor
Key Descriptors are used to contain keys during key distribution.

Table 7-33: Key Descriptor

Offset Field Size Value Description

0 bLength 1 Number Number of bytes in this descriptor, including this
byte

1 bDescriptorType 1 Constant Descriptor Type: KEY Descriptor

2 tTKID 3 Number The TKID value associated with this key, if any.

5 bReserved 1 Byte Reserved, must be zero

6 Key data Var Bytes The actual key data

7.5 Wireless USB Channel Information Elements
The information elements listed in this section are part of the information and control mechanisms for the
Wireless USB Channel as controlled by the host. These information elements are transmitted by a host in MMC
packets.

The general structure of the data payload portion of an MMC is illustrated in Figure 7-4 and detailed in Table
7-34. The information elements in the MMC are channel time allocations (for device notifications or Endpoint
data streams) or host to device control information. Individual information elements may be targeted to a
particular device or may be broadcast to the entire Wireless USB Cluster. MMC packets are transmitted using
secure packet encapsulation with the Encryption Offset field in the security header set to the length of the MMC
payload (packet (frame) length (from PHY Header) – Secure Packet overhead (20 bytes)). This results in the
packet being transmitted in plain text and the secure packet encapsulation provides authentication of the packet.
This approach allows the host to use a single MMC to conduct Wireless USB transactions to devices in both the

 Wireless Universal Serial Bus Specification, Revision 1.1

 182

Authenticated and UnAuthenticated states. See Section 7 for limitations on data communications with devices
in the UnAuthenticated state.

(LSB) (MSB)

2 1 2 2 3 VAR VAR … VAR

WUSB
App
Code
(0100H)

MMC
Code
(01H)

Next
MMC
Time

Reserved WUSB Channel
Time Stamp

IE[0] IE[1] … IE[n]

Figure 7-4. General Structure of an MMC Control Packet

The MAC Layer Header fields in the MMC packet are set to indicate an Application-defined control packet
(frame).

Table 7-34. Detail Field Definition of MMC Packet

Offset Field Size Value Description

0 Application
Identifier

2 Constant Wireless USB [WUSB (0100H)]

2 Type 1 Constant MMC Command Type: (01H)

3 NextMMC
Time

2 Number Units are in micro-seconds. This is the number of
microseconds from the beginning of this MMC to the
beginning of the next MMC packet.

5 Reserved 2 Number This field is reserved and should be set to zeros.

7 WUSB
Channel
Time
Stamp

3 Bitmap This is a timestamp provided by the host based on a free-
running timer in the host. The value in this field indicates the
value of the host free running clock when MMC transmission
starts. The accuracy requirement of the time stamp (to the
host clock) is +/- 40 nanoseconds. The time stamp is
formatted into two fields as follows:

Bits Description

6:0 Microsecond Count. The microsecond count
rolls over after 125 microseconds. Each time it
rolls over the 1/8th Millisecond Count is
incremented.

23:7 1/8th Millisecond Count. This counter
increments every time the Micro-second counter
wraps.

10 IE[0 to n-1] Var MMC IE Array of information elements (if present).

The information elements (IEs) in an MMC are called Wireless USB Channel information elements and include
protocol time slot allocations (for Data and Handshake Phases of Wireless USB transactions), DNTS
declarations and host information and control information. A summary of the Wireless USB Channel IEs are
provided in Table 7-35. The format of each Wireless USB Channel IE is defined in sections below, except for
the IEs used to maintain the Wireless USB transaction protocol. These IE definitions are in the Protocol
Chapter, see Section 5.2.1. A number of the IEs documented below utilize an array structure for addressing 1 to
N devices in the same IE. A host must not include more than 4 elements in any array-based IE. The exception to
this rule is the WCTA_IE, where the host is required to limit the number of WXCTA blocks to 32.

Table 7-35. Wireless USB Channel IE Identifiers

IE
Identifier

IE Name Description

00H-7FH Reserved for future use.

 Wireless Universal Serial Bus Specification, Revision 1.1

 183

IE
Identifier

IE Name Description

80H WCTA_IE Wireless USB Channel Time Allocation Information
Element. May contain one or more channel time
allocations for device endpoints to listen or transmit. See
Section 5.2.1.

81H WCONNECTACK_IE Wireless USB Connect Acknowledge. See Section 7.5.1.

82H WHOSTINFO_IE Specific information about the host that controls the
Wireless USB Channel. See Section 7.5.2.

83H WCHCHANGEANNOUNCE_IE This information element is used to notify cluster
members that the host is moving the Wireless USB
channel to a different PHY channel. See Section 7.5.3.

84H WDEV_DISCONNECT_IE Used by host to inform a specific device that it is being
disconnected. See Section 7.5.4.

85H WHOST_DISCONNECT_IE Used by host to inform the cluster that all connected
devices are being disconnected. See Section 7.5.5.

86H Reserved Reserved and shouldn’t be used in future revisions.

87H WWORK_IE Used by the host in response to a Sleep notification. See
Section 7.5.6.

88H WCHANNEL_STOP_IE Used by the host to notify cluster members that the
Wireless USB channel is being stopped. See Section
7.5.7.

89H WDEV_KEEPALIVE_IE Used by the host to force a device to ‘check-in’ in order to
keep trust fresh or to detect implicit disconnects. See
Section 7.5.8.

8AH Reserved Reserved and shouldn’t be used in future revisions.

8BH WRESETDEVICE_IE Used by the host to cause a device to perform a hard
reset operation. See Section 7.5.9.

8CH Reserved Reserved and shouldn’t be used in future revisions.

8DH WDEVICE_SLEEP_IE Used by the host to direct a device to transition to the
Sleep state. See Section 4.16.1.2

8EH WMASTER_MMC_IE Used by the host to denote a Master MMC. See Section
4.16.1.1

8FH WCONNECTNAK_IE Wireless USB Connect NAK. See Section 7.5.12

8FH-FFH Reserved for future use.

The first field of a channel information element is bLength and the second field is IE_Identifier. The value of
bLength is the length of the information element, including the bLength and IE_Identifier fields.

The order of most MMC IEs is arbitrary. The WHAT_IE when present must be the first IE in an MMC. The
WHOSTINFO_IE when present must be the last IE in an MMC.

Note, device implementations must ignore (and skip) information elements that are not recognized. Future
revisions of this specification may define additional information elements. The general format of information
elements includes a bLength field followed by an IE Identifier field provides sufficient information to a device
to be able to skip information elements it does not recognize.

All IEs except WCTA_IE and Wireless USB Connect Acknowledge IE should be included first in a Master
MMC. Thereafter IEs should repeat in subsequent MMCs according to their Stop Retransmission Conditions.
The host should also consider device DRP availability when deciding on retransmission of IEs.

 Wireless Universal Serial Bus Specification, Revision 1.1

 184

7.5.1 Wireless USB Connect Acknowledge IE
The Connect Acknowledge IE is used to send one or more specific acknowledgements to devices that have
requested association via the DN_Connect device notification (see Section 7.6.1). The format of this IE is
illustrated in Figure 7-5. It is basically an array of connection acknowledgment blocks (ConnectAck), one for
each connect request received.

 (LSB) (MSB)

1 1 18 18 18

bLength IE Identifier =
WCONNECTACK_IE

ConnectAck[0] ConnectAck[1] … ConnectAck[n-1]

Figure 7-5. Format of a Wireless USB Connect Acknowledge IE

The purpose of this information element is to let the requesting device know that its connect request has been
received and to also give it a new device address, that will be used for the Authentication and Authorization
Stage. Table 7-36 illustrates the format of a ConnectAck block.

Table 7-36. ConnectAck Block Format

Offset Field Size Value Description

0 CDID 16 Number Connection Device ID. This field contains the CDID
value from the device’s DN_Connect notification.

16 bDeviceAddress 1 Number This field contains a new device address for the
associating device.

17 bReserved 1 Constant Reserved. Must be set to zero.

Once a device has issued a DN_Connect notification it then waits for an MMC from the host that contains
Connect Acknowledgement IEs. It looks for a ConnectAck block with a CDID field that contains the same
CDID value sent in its DN_Connect notification. When a match is found, the device will set its device address
to the value of the bDeviceAddress. The host must provide at least 2ms of address set-up relaxation from
approximately the start of transmit of the ConnectAck to the start of Wireless USB Transactions addressed to
the device’s Default Endpoint at the assigned bDeviceAddress.

 Stop Retransmission Condition: a host will remove a ConnectAck block for a specific device from the
Connect Acknowledge IE after either of the two events occur:

 The host has observed the associated device responding to control transfers to the Default Control Pipe
addressed to the assigned device address (i.e. value of bDeviceAddress).

 The host has ceased attempts to talk to the device’s Default Control Pipe at the assigned device
address.

7.5.2 Wireless USB Host Information IE
The Wireless USB Host Information Element is used by a host to annotate a Wireless USB channel with its
unique name. The unique name is the Connection Host ID (CHID, see Section 6.2.10.1). The format of this
information element is detailed in Table 7-37. This Information Element should be located in an MMC after all
WCTA_IEs. An MMC may only contain a single Host Information IE.

Table 7-37. Host Information Element

Offset Field Size Value Description

0 bLength 1 Number Size of this information element (in bytes), including this
field.

1 IE Identifier 1 Constant Information IE Type: WHOSTINFO_IE for Host
information element.

 Wireless Universal Serial Bus Specification, Revision 1.1

 185

Offset Field Size Value Description

2 bmAttributes 2 Bitmap Host-specific current capabilities information.

Bit Meaning

1:0 Connection Availability. This field indicates
to Un-connected devices what types of
associations the host is available for at this
time. The encodings are as follows:

00B Reconnect only. Host is
available only for reconnect
notifications.

01B Limited. Host is only available
for connections and
reconnections.

10B Reserved.

11B ALL. Host is open for connect,
reconnect and new connect
notifications.

2 P2P-DRD Capable. A one in this bit location
indicates the host is Peer to Peer DRD
capable. A zero in this bit location indicates
the host is not Peer to Peer DRD capable
(see Section 4.17).

5:3 MAC Layer Stream Index. Devices must
ensure that all packet transmissions have the
value of this field in the Stream Index field of
the MAC Layer Header (see Section 5.6).

15:6 Reserved. Must be set to zero.

4 CHID 16 Number Connection Host ID, which serves as a Unique Host ID.
The device checks this value when locating a particular
host.

Note, connect includes any DN_Connect device notification where the New Connection bit is a zero. The
guidelines for generating a unique CHID are defined in Section 4.15.2.1.

This information element is used by provisioned devices to locate the Wireless USB Channel of a specific host.
A host is not required to include this information element in all MMCs. It must include the IE in at least three
MMCs per superframe when the total number of MMCs in a superframe is greater than 3. Otherwise, it must
include this IE in all MMCs.

 Stop Retransmission Condition: the rules for including this IE in the Wireless USB Channel are stated
above.

7.5.3 Wireless USB Channel Change Announcement IE
The Channel Change Announcement IE is used by a host to announce the Wireless USB channel time at which
devices must begin listening to a different PHY channel for continuation of the current Wireless USB Channel
transmissions. The format of this information element is detailed in Table 7-38.

Table 7-38. Channel Change Announcement Information Element

Offset Field Size Value Description

0 bLength 1 Number Size of this information element (in
bytes), including this field.

 Wireless Universal Serial Bus Specification, Revision 1.1

 186

Offset Field Size Value Description

1 IE Identifier 1 Constant Information IE Type:
WCHCHANGEANNOUNCE_IE for
Channel Change Announcement
information element.

2 bNewPHYChannelNumber 1 Number The PHY channel number where the
host is moving the Wireless USB
Cluster.

3 SwitchTime 3 Timestamp The time at which the Wireless USB
channel will switch to the alternate PHY
channel specified in
bNewPHYChannelNumber.

The allowable values of bNewPHYChannelNumber depend on the PHY channels supported by the host and the
members of its Wireless USB Cluster. Refer to Section 4.10.4 for rules for SwitchTime values and other
operational requirements for devices. Refer to 5.6 for a summary about valid values for the
bNewPHYChannelNumber field.

 Stop Retransmission Condition: the host must cease transmitting this IE after the channel switch has
completed.

7.5.4 Wireless USB Device Disconnect IE
The Device Disconnect IE is used to send Disconnect notifications to one or more specific devices. The format
of this IE is illustrated in Table 7-39.

Table 7-39. Format of a Wireless USB Device Disconnect IE

Offset Field Size Value Description

0 bLength 1 Constant The size of this IE: 2+N (+ optional 1) bytes, where N
is the total number of bDeviceAddresses in this IE

1 IE_Identifier 1 Constant WDEV_DISCONNECT_IE

2 bDeviceAddress N Array Array of device addresses (each one byte)

N+2 bReserved 1 Constant This is a pad byte that must be added by the host to
make the total size of the IE instance be an even
multiple of 2 bytes. The value the host puts into this
field, when it exists, must NOT match any currently
active assigned device address

The purpose of this information element is to allow the host to notify one or more devices that it is being
disconnected.

 Stop Retransmission Condition: the host will cease transmitting this IE after at least 100 ms have elapsed
and it has transmitted at least 3 MMCs that include this IE for the device(s).

7.5.5 Wireless USB Host Disconnect IE
The Host Disconnect IE is used to send Disconnect notifications to all devices in the cluster. The format of this
IE is illustrated in Table 7-40.

Table 7-40. Format of a Wireless USB Host Disconnect IE

Offset Field Size Value Description

0 bLength 1 Constant The size of this IE: 2 bytes

1 IE_Identifier 1 Constant WHOST_DISCONNECT_IE

The purpose of this information element is to allow the host to notify all devices that they are being
disconnected.

 Wireless Universal Serial Bus Specification, Revision 1.1

 187

 Stop Retransmission Condition: the host will cease transmitting this IE after at least 100 ms have elapsed
and it has transmitted at least 3 MMCs that include this IE.

7.5.6 Wireless USB Work IE
The host includes a Work IE in MMCs in response to a Sleep notification from one or more devices. Section
4.16 in the Data Flow chapter describes the full operation.

Table 7-41. Format of a Wireless USB Work IE

Offset Field Size Value Description

0 bLength 1 Constant The size of this IE: 2+N (+ optional 1) bytes, where N is
the total number of bDeviceAddresss in this IE

1 IE_Identifier 1 Constant WWORK_IE

2 bDeviceAddress N Array Array of Device Addresses (each one byte) This field
contains the Device Address identifying which device
this Work IE is a response to.

Bits Description

6:0 Device Address. The device address of
the device the host is responding to.

7 Work Pending. This bit is a 1 if there is
work pending for the device. The bit is 0
otherwise.

N+2 bReserved 1 Constant This is a pad byte that must be added by the host to
make the total size of the IE instance be an even
multiple of 2 bytes. The value the host puts into this
field, when it exists, must NOT match any currently
active assigned device address

 Stop Retransmission Condition: the host will transmit this IE for at least 3 MMCs.

7.5.7 Wireless USB Channel Stop IE
The host includes a Channel Stop IE in MMCs before stopping a USB channel. Section 4.16 in the Data Flow
chapter describes the full operation.

Table 7-42. Format of a Wireless USB Channel Stop IE

Offset Field Size Value Description

0 bLength 1 Constant The size of this IE: 6 bytes

1 IE_Identifier 1 Constant WCHANNEL_STOP_IE

2 bmAttributes 1 Bitmap This field contains attributes for the Channel Stop IE:

Bit Description

0 Remote Wakeup: Value of 1
indicates that the host will be ‘polling’
for Remote Wakeup. 0 otherwise.

1 Reconnect: Value of 1 indicates that
the host expects devices to reconnect
once the channel is restarted and will
maintain connection context. 0
otherwise.

7:2 Reserved

3 StopTime 3 Timestamp The time at which the Wireless USB channel will stop.

 Wireless Universal Serial Bus Specification, Revision 1.1

 188

 Stop Retransmission Condition: the host will remove this IE from the Wireless USB channel when it is
no longer in need of polling for remote wake notifications. If the host is not transitioning to a channel stop
or is not open for remote wake notifications, then it must not include this IE in the Wireless USB channel.

7.5.8 Wireless USB Device Keepalive IE
The Device Keepalive IE is used to direct one or more Wireless USB cluster members to begin transmitting
DN_Alive notifications. The purpose of this IE is described in Section 4.13.2. This IE must be included in every
MMC until host software removes it.

Table 7-43. Format of a Wireless USB Keepalive IE

Offset Field Size Value Description

0 bLength 1 Constant The size of this IE: 2+N (+ optional 1) bytes, where N
is the total number of bDeviceAddresses in this IE

1 IE_Identifier 1 Constant WDEV_KEEPALIVE_IE

2 bDeviceAddress N Array Array of device addresses (each one byte)

N+2 bReserved 1 Constant This is a pad byte that must be added by the host to
make the total size of the IE instance be an even
multiple of 2 bytes. The value the host puts into this
field, when it exists, must NOT match any currently
active assigned device address

 Stop Retransmission Condition: the host will remove a device address from this IE once it has
successfully received a DN_Alive notification from that device.

7.5.9 Wireless USB Reset Device IE
The Reset Device IE is used by a host to cause a device to perform a full ‘reset’ operation. Reset in this context
is intended to be equivalent to a power-on-reset.

Table 7-44 Format of Reset Device IE

Offset Field Size Value Description

0 bLength 1 Constant The size of this IE.

1 IE_Identifier 1 Constant WRESETDEVICE_IE

2 CDID 16xN Number Array of Connection Device IDs (each one 16 bytes).
Each array element contains the CDID value from the
device’s DN_Connect notification.

Stop Retransmission Condition: the host will include this IE for a device in the Wireless USB channel for 6
MMCs.

7.5.10 Wireless USB Device Sleep IE
The host includes the Device Sleep IE in MMCs to direct specific devices to transition to the Sleep state.
Section 4.16 in the Data Flow chapter describes the full operation.

Table 7-45. Format of a Wireless USB Device Sleep IE

Offset Field Size Value Description

0 bLength 1 Constant The size of this IE: 4 + N*4
N – Number of devices that are directed to sleep.

1 IE_Identifier 1 Constant WDEVICE_SLEEP_IE

2 IE_Version 1 Constant 0x01

3 bReserved 1 Constant Reserved, must be zero.

 Wireless Universal Serial Bus Specification, Revision 1.1

 189

Offset Field Size Value Description

4 Device Sleep
Block-0

4 Record 1 Byte Device Address Address of the device
that is directed to Sleep

2 Bytes Sleep Time in milliseconds
The interval during which the host will
assume that the device is in the Sleep
state.

1 Byte Reserved

4+4*n Device Sleep
Block-n

4 Record 1 Byte Device Address

2 Bytes Sleep Time

1 Byte Reserved

 Stop Retransmission Condition: the host will transmit this IE for at least 3 MMCs.

7.5.11 Wireless USB Master MMC IE
The Master MMC IE is used by a host to denote an MMC as a Master MMC. Section 4.16 in the Data Flow
chapter describes the full operation.

Table 7-46. Format of a Wireless USB Master MMC IE

Offset Field Size Value Description

0 bLength 1 Number The size of this IE.

1 IE_Identifier 1 Constant WMASTER_MMC_IE

2 wNextMasterMMCTime 2 Number Units are in micro-seconds. This is the
number of microseconds from the
beginning of this Master MMC to the
beginning of the next Master MMC
packet. Note that when repeating a
master MMC, this field’s value must be
adjusted by the host to take into account
the time that passes between MMCs.

4 bmWorkPending 16 Bitmap This is a 128-bit map, where each bit
location corresponds to a device
address. Bit 0 corresponds to address 0.

Bit value in each location indicates:

0B : No Work Pending for the device
with an address corresponding to the bit
location.
1B: Work Pending for the device with an
address corresponding to the bit
location.

The device operation upon receipt of this IE depends on its state as described in Section 4.16.

 Stop Retransmission Condition: the host transmits this IE in each Master MMC. This IE is retransmitted
in each of the intermediate MMCs following the Master MMC, up to two times, if such MMCs are
scheduled before the next Master MMC.

 Wireless Universal Serial Bus Specification, Revision 1.1

 190

7.5.12 Wireless USB Connect NAK IE
The Connect NAK IE is used to acknowledge the device that its request to connect has been refused by the host.
The format of this IE is illustrated inFigure 7-7Error! Reference source not found.. It is basically an array of
connection NAK blocks (ConnectNAK), one for each connect request received.

 (LSB) (MSB)

1 1 18 18 18

bLength IE Identifier =
WCONNECTNAK_IE

ConnectNAK[
0]

ConnectNAK[
1]

… ConnectNAK[n-1]

Figure 7-6. Format of a Wireless USB Connect NAK IE

The purpose of this information element is to let the requesting device know that its connect request has been
received and refused, with optional reason code. Table 7-47 illustrates the format of a ConnectNAK block.

Table 7-47. ConnectNAK Block Format

Offset Field Size Value Description

0 CDID 16 Number Connection Device ID. This field contains the CDID
value from the device’s DN_Connect notification.

16 bReasonCode 1 Number This field contains a reason code for the connect
refusal. Specifically:
0 – No specific reason given
1 – No resources to support additional device

2 – Device Class is not supported

3 – Wireless Association not supported
4-255 – Reserved.

17 bReserved 1 Constant Reserved. Must be set to zero.

Once a device has issued a DN_Connect notification it then waits for an MMC from the host that contains
Connect Acknowledgement IEs, or Connect NAK IE. In case it receives Connect Acknowledgement IE, its
behavior is specified by 7.5.1 above. In case a device receives an MMC with Connect NAK IE, it looks for a
ConnectNAK block with a CDID field that contains the same CDID value sent in its DN_Connect notification.
When a match is found, the device shall stop sending DN_Connect notifications to the same host, for at least
ConnectNAKBackOffTime (= 60 sec).

 Stop Retransmission Condition: a host will remove a ConnectNAK block for a specific device from the
Connect Acknowledge IE after transmitting it at least 3 times.

7.6 Device Notifications
Wireless USB provides analogs to USB 2.0 device signaling events such as connect, disconnect, etc. This class
of information exchange is characterized as short (small), point-to-point, device to host (upstream), infrequent
and asynchronous.

Wireless USB defines a method of device initiated data communications called Device Notifications. Device
notifications are by definition: infrequent, asynchronous, small bits of data that a device issues to its host. The
Device Notification mechanism is not intended to be used for large information exchanges, so by specification,
the data payloads of device notification messages are limited to 32 bytes. Note this data payload maximum size
applies to the size of the Notification specific field documented below in Table 7-49 (i.e. the 32 byte payload
does not include the rWUSBHeader or bType fields). Device Notification messages only occur during time slots
allocated by a host. These time slots are called Device Notification Time Slots (DNTS). A host is not allowed to
transmit during a DNTS. All device notification packets must be transmitted using the transmit power indicated
by the value of the bTxNotificationTransmitPower field in the WUSB Data (see Section 7.3.1.6).

 Wireless Universal Serial Bus Specification, Revision 1.1

 191

All device notification packets transmitted by devices are directed to the host. All device notification packets
must have the standard Wireless USB Header field as the first portion of the packet frame payload. The contents
of this header are illustrated in Table 7-48. In summary, all fields in the Wireless USB Header (for notification
packets) are set to fixed values.

Table 7-48. Common Wireless USB Header Contents Rules for Device Notification Packets

Offset Field Size Value

0 bmAttributes 1 This field has the following field settings:

Bits Value

3:0 0000B (Endpoint Number)

6:4 DN (Packet PID)

7 Zero

1 bmStatus 1 00H

Device notification packets have the format illustrated in Table 7-49. They include the standard Wireless USB
header followed by a type field (bType). The value of the bType field determines the actual length and format of
the bytes following the bType field.

Table 7-49. Format of a Device Notification Packet

Offset Field Size Value Description

0 rWUSBHeader 2 Record See Table 7-48

2 bType 1 Number See Table 7-50

3 Notification
specific

Var Number The message portion is dependent on the value of the
bType field.

Table 7-50 lists the Device Notification Message types. The table includes the value that must be used in the
bType field of a device notification packet and also includes the valid device state where the notification may be
transmitted by the device. Several device notifications are valid in the same device state. For cases where a
device state has more than one allowable device notification message, Table 7-51 lists the notification message
priority relative to the device state. A lower value designates a higher priority. When a device has multiple
device notifications ready at the same time, it must send the highest priority notification message pending. For
example, if a device has simultaneous pending DN_EPRdy and DN_Disconnect notifications, it must send the
DN_Disconnect message first because it has a higher priority. Note that a device must never send more than one
notification message per DNTS period.

Table 7-50. Device Notification Message Types

Name Value Valid Device State Description

N/A 00H N/A Reserved

DN_Connect 01H UnConnected
Reconnecting
Device Asleep

Connect and Reconnect notification (Section
7.6.1)

DN_Disconnect 02H Authenticated
Device Asleep

Disconnect device (explicit disconnect)
(Section 7.6.2)

DN_EPRdy 03H Authenticated
UnAuthenticated

Device Endpoints Ready (Section 7.6.3)

N/A 04H N/A Reserved and shouldn’t be used in future
revisions.

N/A 05H N/A Reserved and shouldn’t be used in future
versions.

 Wireless Universal Serial Bus Specification, Revision 1.1

 192

Name Value Valid Device State Description

DN_Sleep 06H Authenticated
Device Asleep

Notification that device is going into a lower
power state (Section 7.6.4)

DN_Alive 07H Authenticated
Device Asleep

This notification is the fall-back response to a
Keepalive IE (Section 7.6.5)

DN_PWR 08H Unconnected
Authenticated
UnAuthenticated
Device Asleep

This notification indicates the device battery
status to the host. (Section 7.6.6)

DN_OtherHostConnectReq 09H Authenticated
Device Asleep

Notification indicating Connect-to-me
requests from other hosts (section tbd)

Table 7-51. Device Notification Message Priority List

Device State Priority Device Notification

UnConnected 1 DN_Connect

UnAuthenticated 1 DN_EPRdy

Authenticated 1 DN_Disconnect

2 DN_EPRdy

3 DN_PWR

4 DN_OtherHostConnectReq

5 DN_Sleep

6 DN_Alive

Reconnecting 1 DN_Connect

Device Asleep 1 DN_Disconnect

2 DN_OtherHostConnectReq

3 DN_PWR

4 DN_Sleep

5 DN_Connect

6 DN_Alive

The access method for devices to transmit during a DNTS is based on Slotted Aloha. Refer to Section 5.2.1.3
for details. Note, in Section 5 is the requirement that all Device Notifications use secure packet encapsulation,
unless specifically noted otherwise.

7.6.1 Device Connect (DN_Connect)
Before a device can communicate with a host, it must first establish a connection to that host. At other times,
communications failures may require an existing connection to be reestablished. The method for initiating a
connect, or reconnect event to a host is via the DN_Connect Device Notification. In order to send this device
notification, the device must set its Device Address to the Unconnected_Device_Address (FFH). Once it has
found the host of interest (see Section 4.13) the device will watch MMCs, waiting for a DNTS time slot which
has the appropriate permissions set to allow a connect notification of the type this device needs to make (e.g.
reconnect or new connect). Once a DNTS with the correct permissions on the intended host is identified, the
device will transmit a DN_Connect device notification during the selected DNTS. Table 7-52 illustrates the
format of the DN_Connect device notification packet.

Table 7-52. DN_Connect Notification Format

Offset Field Size Type Description

 Wireless Universal Serial Bus Specification, Revision 1.1

 193

Offset Field Size Type Description

0 rWUSBHeader 2 Record See Table 7-48 for the default values
in this field.

2 bType 1 Constant The value of this field must be
DN_Connect for a Wireless USB
Associate notification.

3 MacAddress 6 Number MAC address of the device issuing the
DN_Connect

9 bmAttributes 2 Bitmap This field contains attributes for the
specific device which the host requires
to complete the association process.
The format of this field is:

Bit Description

7:0 Previous Device
Address.

8 New Connection. This
must be set to a one when
the device is attempting a
‘New’ connection. It must
be set to zero for all other
connection notifications.
This bit is ignored if
Previous Device Address
has a value other than
zero.

10:9 Beacon Behavior. This
field encodes the
beaconing behavior of the
device. The encoded
values are:

Value Description

00B Reserved.

01B Self-Beacon

10B Reserved and
shouldn’t be
used in future
revisions.

11B Reserved and
shouldn’t be
used in future
revisions.

15:11 Reserved. Must be set to
zero.

11 CDID 16 Number Connection Device ID

To make a New Connect request, the device must set the bmAttributes.New Connection field to a one (1B) and
the bmAttributes.Previous Device Address field must be set to 00H. To make a Connect request, the device must
set the bmAttributes.Previous Device Address field to a 00H and the bmAttributes.New Connection field to a
zero (0B). To make a Reconnect request, the device must set the bmAttributes.Previous Device Address field to
the last address explicitly assigned to the device by this host and the bmAttributes.New Connection field must be
set to a zero (0B).

The intent of the CDID field is to allow a host to be able to uniquely discriminate this device connect/reconnect
request from all other devices sending DN_Connect notifications to the same host at the same (relative) time

 Wireless Universal Serial Bus Specification, Revision 1.1

 194

(e.g. they all use the same device address (UnConnected_Device_Address)). Refer to Section 6.2.10.1 for rules
on how a device generates the CDID value.

The intent of the MAC address in the DN_Connect is to allow host software to filter connections of Connect-
To-Me devices, fixed pin and numeric.

 Maximum Retransmit Rate: a device should retransmit this notification no more frequently than three per
100 milliseconds.

 Stop Retransmission Condition: a device will cease retransmission attempts of this notification when it
observes a WCONNECTACK_IE that has a ConnectAck block with a CDID field that matches the
device’s CDID. Device will also cease transmission attempts of this notification after a TrustTimeout
numbers of seconds have elapsed from the first transmission attempt.

7.6.1.1 Connect Request
When a device wants to initiate a connect event, it sends a DN_Connect request to the host, specifying a
bmAttributes.Previous Device Address value of zero (0). The device must set bmAttributes.New Connection
field for New Connect Request or zero (0B) for Connect Request. Refer to Section 6.2.10.3 for rules about how
to generate a CDID when the New Connection flag bit has a value of one. A connect request transmitted from a
device in the UnConnected device state must not use secure packet encapsulation.

7.6.1.2 Reconnect Request
When a device wants to initiate a reconnect event, it sends a DN_Connect request to the host specifying its
current USB device address in the bmAttributes.Previous Device Address field and bmAttributes.New
Connection field must be set to zero (0B).

 A reconnect request must always use secure packet encapsulation.

7.6.2 Device Disconnect (DN_Disconnect)
The USB 2.0 wired model for disconnecting a device is via the user explicitly disconnecting the device from a
wired USB port. Wireless USB provides emulated support for this required model via a DN_Disconnect device
notification.

Table 7-53. Wireless USB Device Disconnect Notification Format

Offset Field Size Type Description

0 rWUSBHeader 2 Record See Table 7-48 for the default values in this field.

2 bType 1 Constant The value of this field must be DN_Disconnect for a
Wireless USB Disconnect notification.

A device disconnect can be initiated by either the device (via a DN_Disconnect notification) or the host (via
Disconnect IEs included in MMCs). A device initiates a disconnection by sending a Device DN_Disconnect
notification to the host during a DNTS. In response to a DN_Disconnect notification or the host stack initiating
disconnection, the host will include a WDEV_DISCONNECT_IE, targeting the requesting device, in MMCs
transmitted to the cluster. See Section 4.13.2 for operational details.

 Maximum Retransmit Rate: a device should retransmit this notification at every DNTS opportunity
provided by the host.

 Stop Retransmission Condition: a device will cease retransmission attempts of this notification when it
observes a WDEV_Disconnect_IE that includes its device address, or it completes three tries of the
notification.

7.6.3 Device Endpoints Ready (DN_EPRdy)
Whenever a device does not have data or space available, it will respond to a transaction request with a flow
control response (see Section 5.5.4). The host response to a flow control event is to remove the endpoint from

 Wireless Universal Serial Bus Specification, Revision 1.1

 195

the active list of endpoints being serviced during the Wireless USB reservation time. A device must use a
DN_EPRdy notification to signal the host that one or more endpoints are ready to resume data streaming. Note,
these notifications are only used for asynchronous type Endpoints (i.e. Control and Bulk).

Table 7-54. Wireless USB Device Endpoints Ready Notification Format

Offset Field Size Type Description

0 rWUSBHeader 2 Record See Table 7-48 for the default values in this field.

2 bType 1 Constant The value of this field must be DN_EPRdy for a
Wireless USB Endpoints Ready device notification.

3 bLength 1 Number This field contains the number of endpoint ready
elements that are present in this notification.

4 bEPsReadyArray Var Array This is an array of endpoint ready elements where
each element identifies the endpoint address
(number and direction) that is ready for data transfer.
The format of an element is:

Field Size Description

Endpoint
Address

1 This is a standard Endpoint
address, where bit [7] is the
Direction (0 = OUT; 1 = IN)
and bits [3:0] are the
endpoint number. Bits [6:4]
must be zero.

Buffers
Available

4 This is a bit vector with the
same information as the
bvAckCode and bvDINAck
fields.

This message allows the device to bundle multiple endpoint ready indications into a single device notification.
The device must include only those endpoints that previously issued flow control events and have recently
transitioned to the ‘ready’ state.

When the host sees the notification it must resume sending transactions to the endpoints within 50 milliseconds,
when the host has data or buffer space available. Devices transmit this notification only when they have
Endpoints that have previously issued flow-control events. If devices transmit a DN_EPRDY notification for
Endpoints which have not been through a flow-control event, the resulting behavior is undefined.

Note that control endpoints encapsulate two endpoints (an IN and OUT at the same endpoint number). If a
device gives a flow control response to the host during a control transfer, then the subsequent EndpointReady
notification must correctly indicate the direction of data flow that must be resumed. For example, a device may
respond to the Status Stage of a SetAddress request (an IN transaction) with a NAK handshake. The device
must indicate the IN Default Control Endpoint Address (80H) in an endpoint ready element.

Also note that the maximum number of endpoints that can be contained in a single DN_EPRDY notification is
six (6). If a device has more than 6 flow-controlled endpoints that are now ready for data streaming, the device
must use more than one DN_EPRDY notification.

This notification may be used in the UnAuthenticated device state, but ONLY for the Default Control Pipe
endpoints.

 Maximum Retransmit Rate: a device should retransmit this notification at every DNTS opportunity
provided by the host with a 50 millisecond duty cycle i.e. the device must send at every DNTS opportunity
for the first 50 milliseconds and then should not send this notification for the next 50 milliseconds (and so-
on).

 Stop Retransmission Condition: a device will cease retransmission attempts of this notification when it
observes the host has resumed transactions to any of the listed function endpoint(s) or the host has not
responded to the DN_EPRdy for an endpoint for TrustTimeout seconds. Note that if the host resumes
transactions to some of the listed function endpoints (but not all) in this DN_EPRdy notification, then it is

 Wireless Universal Serial Bus Specification, Revision 1.1

 196

acceptable for the device to transmit a new DN_EPRdy notification that only includes the endpoints that
are still flow controlled.

7.6.4 Device Sleep (DN_Sleep)
Whenever a device wants to conserve power by sleeping for a period of time, the device sends a DN_Sleep
notification to the host. See Section 4.16 in the Data Flow chapter that describes device power management.
Note: devices must not use (transmit) this notification if they are currently processing a control transfer (i.e.
have not yet responded with an ACK to the Status stage of the control transfer).

Table 7-55. Device Sleep Notification Format

Offset Field Size Type Description

0 rWUSBHeader 2 Record See Table 7-48 for the default values in this field.

2 bType 1 Constant The value of this field must be DN_Sleep.

3 bmAttributes 1 Bitmap This field contains attributes for the Sleep notification:

Bit Description

0 GTS. Value of 0 indicates that the
device is going to sleep even if host
response indicates there is pending
work.
WTS. Value of 1 indicates device will
be awake if host response indicates
that there is work pending.

7:1 Reserved

 Maximum Retransmit Rate: a device should retransmit this notification at every DNTS opportunity
provided by the host.

 Stop Retransmission Condition: a device will cease retransmission attempts of this notification when it
observes a Work_IE with its device address included or after three attempts, whichever comes first.

7.6.5 Device Alive (DN_Alive)
When a device observes a Keepalive IE and its device address matches one of the device addresses in the Target
Device Address array, it will begin transmitting DN_Alive notifications.

Table 7-56. Wireless USB Device Alive Notification Format

Offset Field Size Type Description

0 rWUSBHeader 2 Record See Table 7-48 for the default values in this field.

2 bType 1 Constant The value of this field must be DN_Alive.

The device may choose to substitute some other type of device notification for the DN_Alive, depending on the
current operational needs of the device.

 Maximum Retransmit Rate: a device should retransmit this notification at every DNTS opportunity
provided by the host.

 Stop Retransmission Condition: If in response to a Keepalive_IE, a device will cease transmitting
DN_Alive notifications when it no longer observes a Keepalive IE that includes its device address, or it
observes an MMC without a Keepalive_IE in it. If the device is transitioning from the Asleep power state
(within a TrustTimeou period), the device will cease transmitting DN_Alive notifications after 3
transmissions, or if the host has started transactions to function endpoints on the device, whichever comes
first.

 Wireless Universal Serial Bus Specification, Revision 1.1

 197

7.6.6 Device Power Indication (DN_PWR)
When device power decreases to certain levels, informs the hosta DN_PWR notification to the host. Upon
receiving this notification, the host may stop scheduling transactions for the device or it may disconnect the
device. The host may also provide some indication to the user.

Table 7-57. Device Power Indication Notification Format

Offset Field Size Type Description

0 rWUSBHeader 2 Record See Table 7-52 for the default value in this
field

2 bType 1 Constant The value of this field must be DN_PWR for a
Device Power Indication notification.

3 bmAttributes 1 Bitmap This field could contain attributes for the
device power status:

Bit Description

0 Device power is rechargeable.

7:1 Percentage of power currently
available to the device.

4 wRemainingOperationTime 2 Number The remaining operation time of the device, as
a number of TrustTimeout periods.

The exact time to transmit this notification depends on the device application and implementation. The device
should have related thresholds for power. Once the battery level reaches a threshold, the device can choose to
send the DN_PWR notification. The thresholds should provide sufficient time for host and user to react.

 Maximum Retransmit Rate: a device should retransmit this notification no more frequently than three
per 100 milliseconds.

 Stop Retransmission Condition: a device will cease retransmission attempts of this notification when it
observes a WDEV_Disconnect_IE that includes its device address, or it receives a control transfer (e.g
GET_STATUS) related to power status, or it completes six tries of the notification. The device should
cease retransmission attempts of this notification if it detects an external power source has been attached,
no more power drop occurs.

7.6.7 Other Host Connect-to-Me Notifications (DN_OtherHostConnectReq)
If a WUSB Shared device which is representing that it supports Hand-off by including the Hand-off Bit in its
WUSB Capabilities IE is targeted by a Connect-to-me request from another host while in an active connection
it should send a DN_OtherHostConnectReq notification to the currently connected host. This should enable the
host to indicate this request to the user through the host GUI. Depending on the user input or any other criteria,
the host may decide to disconnect the device or deny the request. The shared device can then connect to the
other host requesting connection.

Table 7-58. Device Other Host Connection Request Format

Offset Field Size Type Description

0 rWUSBHeader 2 Record See Table 7-48 for the default values in this
field.

2 bType 1 Constant The value of this field must be
DN_OtherHostConnectReq.

3 MAC Address 6 Number MAC Address of the host requesting the Shared
Device connect to it.

Maximum Retransmit Rate: a device should retransmit this notification no more frequently than three
per 100 milliseconds.

 Wireless Universal Serial Bus Specification, Revision 1.1

 198

Stop Retransmission Condition: a device will cease retransmission attempts of this notification when it
completes six tries of the notification, when the device is disconnected, or when the device sees a Connect
To Me NAK IE included in the host beaconing targeting its MAC address.

7.7 MAC Layer-Specific Information/Framework
Following section specifies the wireless USB specific ASIE formats included in the beacon of wireless USB
host and device depending upon specific requirements.

7.7.1 Host MAC Layer Responsibilities
A host must implement the MAC Layer protocol (see reference [3]), establish and maintain Wireless USB
Channels by allocating MAC Layer MAS reservations (i.e. DRPs). A host must include a Distributed
Reservation Protocol Information Element (DRP IE) in its Beacon to protect the Wireless USB channel. As
described in the Dataflow Chapter, the host allocates a Cluster Broadcast ID and Stream Index for every
Wireless USB channel it creates. The host may also establish reservations for other applications. To avoid
confusion between different reservations a host must ensure that the pair {DevAddr, Stream Index} is globally
unique across all of the applications reserving MAC Layer channel time from the host’s platform. Table 7-59
summarizes the DRP content settings for the values in a DRP IE for the Wireless USB application. The entire
contents of the DRP IE are provided for completeness. Note that this specification defers to reference [3] on all
discrepancies.

Table 7-59. Host Wireless USB MAC Layer DRP IE Settings

Offset Field Size Value Description

0 Element ID 1 Constant Distributed Reservation Protocol IE (0x09)

1 Length 1 Number This field contains the length of this descriptor, not
including the Element ID and Length (4+4N), where N is
the number of DRP allocation blocks.

2 DRP Control 2 Bitmap Bits Name Value

2:0 Reservation Type 011B (Private)

5:3 Stream Index Assigned

8:6 Reason Code Variable

9 Reservation
Status

Variable

10 Owner 1B

11 Conflict Tie-
breaker

Variable

12 Unsafe Variable, Note 1

15:13 Reserved 000B

4 DevAddr 2 Number Wireless USB Broadcast Cluster ID

6 DRP Allocation Var Record Array of DRP Allocations. Refer to reference [3] for details.

Note 1. The value for the Unsafe field must be set to an appropriate value in compliance with the reservation
policy defined by [3].

7.7.2 Device MAC Layer responsibilities
A device must implement the MAC Layer protocol, see reference [3].

When a device wants to connect to a host or when a device is connected to a host, the device must include a
WUSB ASIE (see section 7.7.7) in each of its beacons. The WUSB ASIE is used by the host to identify beacons
that are sent by devices that want to connect to the host or are connected to the host.

 Wireless Universal Serial Bus Specification, Revision 1.1

 199

A device must be able to construct a DRP IE. A device should accept the entire Wireless USB Channel
reservation indicated in the host’s DRP IE if the host’s reservation does not conflict with any reservations of the
device’s neighbors. A device can accept part of the Wireless USB Channel reservation if it cannot accept the
entire reservation due to reservation conflict. A device must accept part of or the entire host Wireless USB
Channel reservation before it can send a DN_Connect. Table 7-60 summarizes the DRP content settings for the
values in a DRP IE for a device. Note that this specification defers to reference [3] on all discrepancies.

Table 7-60. Wireless USB Cluster Member MAC Layer DRP IE Settings

Offset Field Size Value Description

0 Element ID 1 Constant Distributed Reservation Protocol IE (0x09)

1 Length 1 Number This field contains the length of this descriptor, not
including the Element ID and Length (4+4N), where N is
the number of DRP allocation blocks.

2 DRP Control 2 Bitmap Bits Name Value

2:0 Reservation Type 011B (Private)

5:3 Stream Index Same as host

8:6 Reason Code Variable

9 Reservation
Status

Variable

10 Owner 0B

11 Conflict Tie-
breaker

Same as host

12 Unsafe Same as host

15:14 Reserved 000B

4 DevAddr 2 Number Host DevAddr

6 DRP Allocation Var Record Array of DRP Allocations. Refer to reference [3] for details

A device must be able to construct a DRP Availability IE. All DRP reservations seen by the device, including
the reservations that comprise the Wireless USB channel reservation, must be excluded from the devices DRP
availability information. A device must include a DRP Availability IE in its beacon in the following two cases.

 When a device wants to connect to a host, the device must include a DRP Availability IE in each of its
beacons.

 When a device’s DRP availability changes, the device must include a DRP Availability IE for at least
four consecutive beacons.

 Wireless Universal Serial Bus Specification, Revision 1.1

 200

7.7.3 Wireless USB Bandwidth Reservation Policy
This section defines the reservation policy describing how much UWB bandwidth a WUSB cluster can acquire
in a channel. This allows efficient and fair distribution between all UWB entities present in the environment.

1. A host that is not connected to any devices has a safe reservation upper limit of MAX_WUSB_CHANNEL
MAS. When a host detects that a device intends to connect to it by looking at the device’ WUSB ASIE, the
host’s safe reservation upper limit is increased to ASYNC_MAX. The upper limit returns to
MAX_WUSB_CHANNELL_MAS when no devices are connected.

2. For the purpose of the Reservation Policy, the limits on reservation size are determined by the following
values:

 SafeForAsync: safe reservations for Bulk transfers, Control transfers, Notification type Interrupt
transfers, and maintaining the WUSB Channel.

 SafeForPeriodic: safe reservations for Isochronous transfers, and periodic type Interrupt transfers.

 Unsafe Reservations

3. The value of SafeForPeriodic is calculated as follows:

 Sum over all periodic endpoints (Isochronous and periodic Interrupt endpoints):

o Calculate the number of bytes that need to be transferred in a superframe, based on the
endpoint parameters, e.g. service interval, max burst and max packet size

o Calculate the number of MAS that are needed to transfer those bytes at
MIN_PERIODIC_RATE.

 Notes:

o This approach ensures that isochronous transfers and periodic Interrupt transfers will work on
effective data rates equal to or higher than MIN_PERIODIC_RATE

o Isochronous and periodic type Interrupt transfers would face difficulties if the effective rate
drops below MIN_PERIODIC_RATE.

4. The value of SafeForAsync is calculated as per follows:

 The value of SafeForAsync is ASYNC_MAX if SafeForPeriodic equals zero (no periodic endpoints)

 If SafeForPeriodic is non-zero then SafeForAsync is reduced according to the following rule:

o SafeForAsync = max(ASYNC_MOIN, ASYNC_MAX – SafeForPeriodic)

See figure below for graphic illustration.

 Wireless Universal Serial Bus Specification, Revision 1.1

 201

Safe Reservations

0

16

32

48

64

80

96

112

128

0 16 32 48 64 80 96 112 128

Safe for Periodic MASes

[M
A

S
]

Total Safe Reservations

Safe for Async

Figure 7-7. Maximum allowed SafeForAsync varies according to how much SafeForPeriodic Mases the
host has acquired. This graph shows that relation

5. The rules for the cluster reservation size are:

 Safe reservation upper limit equals min(112, SafeForPeriodic + SafeForAsync). This ensures that the
safe reservation is never more than the MAC limit (see MAC specification section B.2) A host shall
not make or attempt to make a safe reservation greater than this limit.

 A host is encouraged to make safe reservations for less than this limit, based on its current bandwidth
requirement, in order to allow for a high device density.

 A host may make unsafe reservations in addition to its safe reservation where there is no contention for
MAS with other users of the superframe. By using unsafe reservations we signal to other users of the
superframe that we are prepared to relinquish MAS if necessary in order to achieve high device density

 The values SafeForAsync and SafeForPeriodic are not distinguishable from the DRP IEs. The DRP IEs
will reserve up to the total safe reservation.

 The host may freely use the MAS that it reserves, e.g. is not required to use SafeForPeriodic MAS for
servicing periodic endpoints.

7.7.4 Host Rules

This section describes the rules the Host should follows in order to achieve the goals of the Reservation Policy.

1. The MAC specification the Relinquish Request IE (see section 7.8.19) and its use to request that unsafe
reservations be freed (see section B.2). Wireless USB Hosts shall implement this functionality for receive
and transmit.

2. If a host is unable to reserve its permitted safe reservation (as per above rules) due to unsafe reservations
made by its neighbors it may send a Relinquish Request IE to reserve those MAS as per the MAC
specification.

3. If a host needs more unsafe reservation, and it is available, it may just reserve it.

4. If a host (say A) needs more unsafe reservation, and one or more of its neighbors has more unsafe
reservation than A’s existing unsafe reservation, then it may use a Relinquish Request IE to one of its
neighbors (say B) that has the largest unsafe reservation of all its neighbors. If the difference in unsafe

 Wireless Universal Serial Bus Specification, Revision 1.1

 202

reservation size between A and B is X then the Relinquish Request IE may only request the release of at
most X/2 MAS. The neighbor B may be any UWB device, including a Wireless USB Host or a Wireless
USB Device.

5. There as situations where a device accepts part of the host’s reservation. In such situations the host may
use the devices DRP Availability IE to increase the MAS available for communication with this device, if
permitted by other MAS usage by its neighbors

7.7.5 Device Rules

This section describes the rules the Device follows in order to achieve the goals of the Reservation Policy.

1. If possible a device shall accept all of the reservation of its connected host. If this is not possible then a
device may accept a subset of the host’s reservation.

2. The MAC specification Section 8.1.10.19 describes the action of a reservation target on receiving a
relinquish request IE. Wireless USB Devices shall implement this functionality, or shall respond to a
Relinquish Request IE by modifying their reservation so that it is safe.

3. If a device cannot accept any or all of the host’s reservation then it shall use the DRP Availability IE to
inform its host of its MAS availability. The host may use this information (as described in host rule 5
above) to move its reservation in the superframe and so increase the portion of the reservation which can be
accepted by this device.

4. If a device is unable to accept a portion of the connected host’s safe reservation, and is blocked from doing
so by MAS that are reserved by another neighbor as part of an unsafe reservation, then the device shall
send a Relinquish Request to that neighbor in order to reduce its reservation size. Te neighbor may be any
UWB device, including a WUSB Host or WUSB Device.

As examples of the operation of these rules, the expected behavior for certain use cases is provided as follows.

Case 1

In the diagram H1 and H2 are hosts; D1 and D2 are devices; H1 and D1 share an association and wish to
operate together; and H2 and D2 share an association and wish to operate together. Each host or device can
transmit to and receive from only its immediate neighbors in the diagram.

In this use case H2 and D2 start first, allocating a reservation of the entire superframe. This reservation has
ASYNC_MAX safe MAS, the rest are unsafe. D1 joins H1, and H1 creates a reservation of the entire
superframe. D1 cannot accept any part of this reservation because no MAS are available.

The expected behavior is that D1 uses device rule 4 (above) to send a Relinquish Request IE to H2. It does not
matter which MAS the request identifies, only that the number of MAS in the Relinquish Request does not
exceed the unsafe portion of H2’s reservation. H2 reduces its reservation as requested. D1 can now accept some
part of H1’s reservation.

The result may not be fair. D1 can ask H2 to relinquish all but 64 MAS, so that the end result is that H1/D1 get
¾ of the MAS rather than ½. However, as a subsequent step H2 can use host rule 4 to correct this imbalance.

Case 2

 Wireless Universal Serial Bus Specification, Revision 1.1

 203

The initial conditions and the startup order are the same as the previous case.

In this case D1 uses device rule 4 to send a Relinquish Request IE to D2. D2 uses device rule 2, and either
reduces the accepted part of its reservation or forwards the Relinquish Request to H2. In the latter case H2
reduces its reservation, D2 accepts the reduced reservation. D1 can now accept some part of H1’s reservation,
and the end result is as for case 1.

The benefit of providing choice in device rule 2 is that either D2 or H2 can decide exactly which MAS to
relinquish.

7.7.6 Reservation Related Parameters
Table 7-61. WUSB Bandwidth Reservation Policy Parameters

Parameter Value

MAX_WUSB_CHANNEL 16

ASYNC_MAX 64

ASYNC_MIN 16

MIN_PERIODIC_RATE 200 Mbps

7.7.7 Connection specific IE’s
All WUSB Host and Devices which transmit a beacon shall include following connection specific ASIE. Table
7-62 shows the contents of the Connection specific ASIE.

Table 7-62. Wireless USB Connection specific ASIE

Offset Field Size Value Description

0 Element ID 1 Constant 0xFF (= WiMedia Application Specific IE ID

1 Length 1 Number This field contains the length of this ASIE, including the
Element ID and Length (2+N), where N is the sum of
length of additional WUSB application specific IE’s
specific to connection.

2 Specifier ID 2 Number 0x0100 (=Wireless USB)

4 Application
specific
ASIE[1..n]

4+N Variable Application specific ASIE’s included within the one
connection specific IE, sorted by ASIE ID.

 Wireless Universal Serial Bus Specification, Revision 1.1

 204

Table 7-63. Wireless USB Application specific ASIE

Offset Field Size Value Description

0 Application
Specific
Element ID

1 Constant 0x00 WUSB Protocol Version IE

0x01 WUSB capabilities IE

0x02 Device Class Code IE

0x03 Device Status IE

0x04 Connect-to-me IE

0x05 Connect-to-Me NAK IE

0x06 Host Negotiation Protocol (HNP) Request IE

0x07 Host Negotiation Protocol (HNP) Response IE

0x08 Remote Wakeup IE

0x09 –
0xFF

Reserved

1 Length 1 Number This field contains the length of this application specific ASIE,
including the Application specific Element ID and Length
(2+M), where M is length of additional WUSB application
specific IE’s.

2 Application
specific data

2+
M

Variable Data for application specific IE

7.7.7.1 WUSB Protocol Version IE data

All WUSB hosts and devices shall transmit a WUSB Protocol IE. WUSB Protocol Version IE broadcasts what
protocol the WUSB entity is operating. Bit field for the WUSB Protocol Version IE is shown in Table 7-64.

Table 7-64. WUSB Protocol Version IE fields

Offset Field Size Value Description

0 bType 1 0x00 WUSB Protocol ID (Table 7-63)

1 bLength 1 0x02 Length

2 wVersion 2 constant Protocol Version

0x0100 = WUSB 1.0

0x0101 = WUSB 1.1

 Other: reserved

7.7.7.2 WUSB capability IE
All WUSB Hosts and Devices shall transmit a WUSB Capabilities IE. Bit field for the WUSB Capabilities is
shown in Table 7-65

 Wireless Universal Serial Bus Specification, Revision 1.1

 205

Table 7-65. WUSB Capabilities IE bit field

Offset Field Size Value Description

0 bType 1 0x01 WUSB Capabilities (Table 7-63)

1 bLength 1 0x02 Length

 wCapabilties 2 Bit Field Description

b0 System supports Host mode
0B : Host mode disabled
1B : Host mode enabled

b1 System supports Device mode
0B : Device mode disabled
1B : Device mode enabled

b2 System supports p2p DRD mode
0B : p2p DRD disabled
1B : p2p DRD enabled

b3 System supports DRD mode
0B : DRD disabled
1B : DRD enabled

b4 Host supports CTM
0B : CTM disabled (note that CTM support is mandatory)
1B : CTM enabled

b5 Shared device
0B: Not a shared device (does not support CTM)
1B: Is a shared device (supports CTM)

b6 Supports Hand-off
0B: Does not support Hand-off
1B: Supports Hand-off
Notes: If operating in host mode this bit represents if the host
supports releasing a Shared Device. If operating in device mode this
bit represents if the shared device supports issuing the
DN_OtherHostConnectionReq, and if currently in a connection that
the host currently connected supports hand-off

b7 Cable association
0B: Does not support cable association
1B: Supports cable association

b8 Numeric association
0B: Does not support numeric association
1B: Supports numeric association

b9 Fixed PIN association
0B: Does not support PIN association
1B: Supports PIN association

b10 NFC association
0B: Does not support NFC association
1B: Supports NFC association

b11 TrackAllMMCs Flag
1B: Tracks all the MMCs irrespective of the ‘work pending’ indication
in the Master MMC.
0B: Tracks the Master MMCs as described in [link to Section 4.16.1.1]

b15:b12 Reserved

7.7.7.3 Device Class Code IE data
Device Class code of WUSB device.

 Wireless Universal Serial Bus Specification, Revision 1.1

 206

Table 7-66. Device Class Code IE bit field

Offset Field Size Value Description

0 bType 1 0x02 Device Class Code (Table 7-63)

1 Blength 1 0x03 Length

2 bClass 1 Constant Device Class

3 bSubclass 1 Constant Device Subclass

4 bProtocol 1 Constant Device Protocol

7.7.7.4 Device status IE data
Device status IE broadcast status of WUSB device. Bit field for the device status is shown in Table 7-67.

Table 7-67. Device Status IE bit field

Offset Field Size Value Description

0 bType 1 0x03 Device Status (Table 7-63)

1 bLength 1 0x02 Length

2 wStatus 2 Bit field Description

B0:3 B3:B0
0000B: not connected
0001B: Connected as device
0101B: p2p DRD connected as device
1011B: combinational DRD connected as host
and device
Other: Reserved

B4 Device mode shared
0B: device is not a shared device
1B: Device is a shared device

B15 :b5 Reserved

7.7.7.5 Connect-to-me IE
Wireless USB host should include following details when directing a device to connect to it.

Parameters are shown in Table 7-68.

Table 7-68. Connect to Me IE bit field

Offset Field Size Value Description

0 bType 1 0x04 Connect-to-Me (Table 7-63)

1 blength 1 0x07 Length

2 Target 6 EUI-48 Target Device EUI-48

This is the EUI-48 of a device which a host wishes
to have connect.

8 bMethod 1 number Host desired association method

0 : Not specified

1 : Numeric Association

2 : Fixed PIN Association

 Wireless Universal Serial Bus Specification, Revision 1.1

 207

7.7.7.6 Connect-to-Me NAK IE
Wireless USB hosts and devices shall include the following Connect-To-Me NAK IE when a host does not
want to release a shared device.

Parameters are shown in Table 7-69.

Table 7-69. Connect-to-Me NAK IE fields

Offset Field Size Value Description

0 bType 1 0x05 Type (=0x05)

1 bLength 1 0x07 Length (=0x07)

2 Target 6 EUI-48 Target Device EUI-48

This is the EUI-48 which the NAK is intended for

8 bReason 1 number Reason Code for the NAK

0x00 – Host has denied request

0x01 – Host did not respond with CNAK or
issue DN_Disconnect within 2 minutes

7.7.7.7 Host Negotiation Protocol (HNP) Request IE
The HNP Request IE is used when two DRD devices connected to each other wish to modify their connection,
by either switching the host / device roles (e.g. in case of Static DRD usage), or by establishing an additional
WUSB channel, thus operating simultaneously as host and device.

The purpose of this information element is to ask the peer DRD device to assume an alternative or an additional
role, either as host or as a device, towards the requesting DRD device.

Table 7-70. HNP Request data Format

Offset Field Size Value Description

0 bType 1 0x06 HNP Request IE

1 bLength 1 0x04

2 Target DevAddr 2 Number The WiMedia MAC DevAddr of the DRD device
to which the HNP request is addressed.

4 bControl 1 Bitmap Bit Encoding

1:0 00 - Reserved
01 – Target DRD is requested to
switch to device mode
10 – Target DRD is requested to
switch to host mode
11 – Target DRD is requested to
operate in P2P mode

7:2 Reserved. Must be set to 0

5 bReserved 1 Constant Reserved. Must be set to zero.

Once a device has issued an HNP Request IE, it then waits for its peer DRD to respond with HNP Response IE,
and, assuming the negotiation is successful, the DRD devices shall establish the connection with the new roles
as per HNP negotiation results.

 Stop Retransmission Condition: a DRD device shall remove an HNP Request IE for a specific device
either after receiving HNP Response IE, or after transmitting it at least 3 times, whichever comes earlier.

 Wireless Universal Serial Bus Specification, Revision 1.1

 208

7.7.7.8 Host Negotiation Protocol (HNP) Response IE
The HNP Response IE is used as part of Host Negotiation Protocol when a DRD device responds to its peer
DRD HNP Request (see 7.7.7.7). The DRD responder to HNP Request may either accept the request and act
upon it, or deny the request. In either case the DRD shall respond with an HNP Response IE. In case the
request is granted, the responder with act accordingly, and assume roles as agreed by the HNP negotiation.

The purpose of this information element is to complete the HNP negotiation and let the requesting device know
the result: whether the negotiation has been completed successfully, or not..

Table 7-71. HNP Response data Format

Offset Field Size Value Description

0 bType 1 0x07 HNP Response IE

1 bLength 1 0x04

2 Target
DevAddr

2 Number The WiMedia MAC DevAddr of the DRD device
which initiated the HNP request, and to which the
HNP Response is addressed.

4 bControl 1 Bitmap Bit Encoding
0 0 – HNP Request is granted. The DRD

device shall assume the new roles
1 – The HNP Request is denied. The DRD
device shall mot modify its mode of
operation.

7:1 Reason code:
0x00 – No specific reason given, or HNP
is granted
0x01 – Device does not support Device
mode
0x02 – Device does not support Host
mode
0x03 – Device does not support P2P /
concurrent Host + Device operation
0x04 – DRD can not assume Device mode
being busy as device on another
connection
 0x05-0x7F Other – Reserved.

5 bReserved 1 Constant Reserved. Must be set to zero.

Once a device has issued an HNP Response IE, it then shall act to establish the connection with the new roles as
per HNP negotiation results.

 Stop Retransmission Condition: a DRD device shall remove an HNP Response IE for a specific device
after transmitting it at least 3 times.

7.7.7.9 Remote Wakeup IE data
Wireless USB device should include following data in the Remote Wakeup IE when requesting a host to wake.

Table 7-72. Remote Wakeup IE fields

Offset Field Size Value Description
0 bType 1 0x08 Remote Wakeup IE

1 bLength 1 0x16 0x16

2 Target 6 EUI-48 EUI-48 of the host that the device wishes to wake

8 wToken 16 number Wake Token that the host passed to the device before
the WUSB channel was stopped (see section 7.3.1.6)

 Wireless Universal Serial Bus Specification, Revision 1.1

 209

Chapter 8 Wire Adapter

The Wire Adapter Class definition provides a generic abstraction that delivers the capabilities of a Wired or
Wireless USB Host Controller through a USB device interface. This definition includes devices that are used to
connect wired USB devices to a Wireless USB host (Device Wire Adapter) and also to those devices that add
Wireless USB capabilities to a USB 2.0 host (Host Wire Adapter).

This chapter contains all necessary information for a designer to build a compliant Wire Adapter device. It
specifies the standard and class-specific descriptors that must be present in each Wire Adapter. It further
explains the use of class-specific requests that allow for full control of the Wire Adapter. This chapter is
intended to be useful for:

 A hardware device vendor or firmware engineer intending to build and program a Wired or Wireless USB
connected Wire Adapter which adheres to this specification, and

 A software driver developer.

This chapter defines two forms of Wire Adapters as illustrated in Figure 8-1. A Host Wire Adapter (HWA) is a
USB device whose upstream connection is a USB 2.0 wired interface. The HWA operates as a host to a cluster
of downstream Wireless USB devices. The Device Wire Adapter (DWA) is a USB device whose upstream
connection is a Wireless USB interface. The DWA operates as a USB 2.0 (wired) host to devices connected
below its downstream port(s). Figure 8-1 illustrates the USB device connection topology enabled when HWAs
and DWAs are ‘connected’ in series. The HWA is the host to the DWA and WUSB devices and the DWA is the
host for the Mass Storage and other USB2 device.

Figure 8-1. Host and Device Wire Adapters Enabled USB Topology

This chapter is divided into two parts: The paragraphs in chapter 8.1 are dedicated to Device Wire Adapter.
Paragraphs in chapter 8.2 are dedicated to Host Wire Adapter, including requirements for radio management
interface, which is a required interface for Host Wire Adapter.

8.1 DWA Operational Model
Note: The Device Wire Adaptor behavior as specified in this chapter may not be backward
compatible to the Wire Adaptor as specified by 1.0 version of the WUSB standard.
Backward comptibility is discussed in Appendix C, Backward Compatibility Requirements.

8.1.1 DWA Functional Characteristics
The basic functional block model for a DWA is illustrated in Figure 8-2. The common functional components
of a Wire Adapter (WA) include the device control and WA functions. Device control is accessed via the
Default Control Pipe using the USB 2.0 or Wireless USB standard device requests. These requests are defined
in Chapter 9 of the USB 2.0 specification and Section 7 of this specification. Device Wire Adapters provide
also a Transparent RPipe interface mechanism, by which an Isochronous Streaming interface can be
implemented to support isochronous data streams (see Section 8.1.18.1).

 Wireless Universal Serial Bus Specification, Revision 1.1

 210

Figure 8-2. Device Wire Adapter Functional Model Block Diagram

The DWA function is operationally common to all DWA implementations. The DWA function is managed via
the WA Data Transfer Interface (see Section 8.1.2).

8.1.2 DWA Data Transfer Interface
This interface has a minimum of two function endpoints: Transfer Requests Endpoint and Transfer Results
Endpoint. These endpoints, plus the default Control endpoint, can be used to accomplish all of the data and
control communications between the USB host system and the Wire Adapter. On top of these two, a specific
DWA implementation may include other optional endpoints, for better performance of a particular application.
The endpoints and their purposes are enumerated below:

Control Endpoint This is the standard Default Control Pipe. It handles all non-transfer
requests including all of the required standard requests which are
defined in chapter 9 of the USB 2.0 specification and the WA class
specific requests defined in Section 8.1.16.

Bulk OUT Transfer
Requests Endpoint
(mandatory)

This Bulk OUT endpoint is used to move data transfer requests to the
Wire Adapter. Optionally the same Bulk OUT endpoint can be used
also for moving data itself through the Wire Adapter to the client
device OUT endpoint, very much like the Data Transfer Endpoint.
The data may be concatenated in the same packet with the
corresponding Transfer Request, or may be sent in separate packets.

Support for this endpoint is mandatory.

Bulk IN Transfer
Results Endpoint
(mandatory)

This Bulk IN endpoint is used to move data transfer results and DWA
notifications (e.g. Port Status Change) from the Wire Adapter to the
host. Optionally the same Bulk IN endpoint can be used also for
moving data through the Wire Adapter to the host from the client
device endpoint, very much like the Data Transfer Endpoint. The data
may be concatenated in the same packet with the corresponding
Transfer Result, or may be sent in separate packets.

Support for this endpoint is mandatory.

Transfer Requests
Endpoints (optional)

A specific implementation of Device Wire Adapter may use
additional Transfer Request Endpoints, on top of the mandatory Bulk
OUT Transfer Request Endpoint.

Such additional optional Transfer Requests Endpoints may be either

 Wireless Universal Serial Bus Specification, Revision 1.1

 211

of Bulk OUT or of Interrupt OUT type.

As in case of Bulk OUT Transfer Request Endpoint, it may be used to
move Transfer Requests only, as well as Transfer Requests and data
(concatenated or not) to the Wire Adapter.

Support for this endpoint is optional.

Bulk IN Transfer
Results Endpoint
(mandatory)

A specific implementation of Device Wire Adapter may use
additional Transfer Results Endpoints, on top of the mandatory Bulk
IN Transfer Result Endpoint.

Such additional optional Transfer Results Endpoint may be either of
Bulk IN or of Interrupt IN type.

As in case of Bulk IN Transfer Results Endpoint, it may be used to
move Transfer Results only, as well as Transfer Requests and data
(concatenated or not) to the Wire Adapter.

Support for this endpoint is optional.

Data Transfer
Endpoints

This set of IN/OUT endpoints is used to move data through the Wire
Adapter to/from the client function endpoint.

A bulk OUT endpoint may be used to send transfer data from the host
to the Wire Adapter.

A bulk IN endpoint may be used to return transfer data from the Wire
Adapter to the host.

Use of this type of endpoints is optional in case Data Transfer Request
/ Result Endpoint is also used for Data transfers.

Number of Data Transfer endpoints supported is implementation-
dependent.

Data Transfer
Transparent Endpoints

The routing of data in these transparent endpoints is determined by the
corresponding RPipe Descriptor.

A Data Transfer Transparent Endpoint can be of either Bulk IN /
OUT, Interrupt IN / OUT, or Isochronous IN / OUT type.

This type of endpoints is particularly useful for applications using
periodic (Isochronous, Interrupt, Preferred Bulk) transfer types, as
well as Async (Bulk) application which require some lax max latency
for good performance (e.g. Mass Storage devices).

Support of this type of Data Transfer Transparent endpoints is
optional.

Number of Data Transfer Transparent endpoints supported is
implementation-dependent.

Mapping of endpoints type in a specific DWA implementation is determined by Device Wire Adapter
Endpoints Mapping Descriptor, see 8.1.18.2.8.

8.1.3 Remote Pipe
A Remote Pipe is a logical abstraction that provides a data flow through the Device Wire Adapter to a specific
endpoint on a specific device. Pipes are described in detail in Chapters 5 and 10 of the USB Specification 2.0.

A Device Wire Adapter provides a fixed number of Remote Pipes. The number of Remote Pipes supported is up
to the implementer. A simple Wire Adapter must provide at least 2 Remote Pipes to provide support for a single
attached device that only requires a control endpoint. The maximum number of Remote Pipes that a Device
Wire Adapter would need to support is 3937 (127 devices X 31 endpoints/device); however Wire Adapter

 Wireless Universal Serial Bus Specification, Revision 1.1

 212

implementations are never expected to support 3937 physical Remote Pipes. Host software will multiplex
Remote Pipes between Asynchronous endpoints. Periodic endpoints that have active transfers may require
either dedicated Remote Pipes, or Transparent Remote Pipes. The minimum number of Remote Pipes is twice
the number of ports that the Device Wire Adapter supports at the same time.

The Default Control Pipe is used to initialize and manage individual Remote Pipes, the Data Transfer Pipes and
Data Transfer Transparent Pipes are used to move data through them. The general operational flow of a Remote
Pipe is:

1. Host initializes a Remote Pipe resource on the Wire Adapter via requests on the Default Control Pipe (see
Section 8.1.16).

2. Bulk OUT Transfer Requests endpoint is used for the following purposes:

 Send Transfer Requests

 Optionally: Send data destined for a device connected to one of the ports of the Wire Adapter

 Stop a Transfer Request by sending Abort Transfer Request

3. To start a control, bulk, or interrupt transfer to a device connected downstream of a Wire Adapter, the host
sends a Transfer Request (Section 8.1.16.11) over Transfer Request endpoint to the Wire Adapter function.
The Transfer Request is addressed to a specific Remote Pipe resource on the Wire Adapter, and includes
information over which endpoint the data is to be sent. The amount of data that follows the Transfer
Request is also described in the same Transfer Request.

a. If the endpoint associated with the specific Transfer Request for OUT is the same Transfer Request
endpoint, the OUT data will immediately follow the Transfer Request (Concatenated with Transfer
Request in the same packet, or followed by a separate burst of packets).

b. If the endpoint associated with a specific Transfer Request for OUT is one of the Data Transfer
Endpoints (OUT), the OUT data will be forwarded through this endpoint, in a contiguous manner.

c. If the Transfer Request is for an IN transaction, the Wire Adapter will respond by sending a Transfer
Result over Transfer Results endpoint (per specific bTResEPNumber field of RPipe configuration, see
Table 8-34. Device Wire Adapter RPipe Descriptor), and then start forwarding the IN data over the
Data Transfer Endpoint, as specified in the before-mentioned Transfer Request, in a contiguous
manner.

4. The Wire Adapter must check that the target Remote Pipe is configured to the same transfer type as
specified in the Transfer Request.

5. The Wire Adapter does not STALL the Transfer Requests endpoint when the Transfer Request is incorrect.
Rather, it continues to accept the Transfer Request and any data that may follow the request, and then
prepare a Transfer Result ready for host reception in Transfer Results endpoint (per bTResEPNumber
parameter of RPipe Descriptor configuration, see Table 8-34. Device Wire Adapter RPipe Descriptor). The
host will poll the Transfer Results Endpoint (IN) to get the Transfer Result, which must state that the Wire
Adapter detected an error in the Transfer Request. The error values are defined in Table 8-16 (see Section
8.1.16.11.3).

6. The transfer results generated from a bulk, interrupt or control transfer request are transferred to the host
from the Wire Adapter through the Transfer Results Endpoint (IN). By default, the Bulk IN Transfer
Results endpoint is used. The host software, however, may use the bTResEPNumber field in RPipe
descriptor (see Table 8-34. Device Wire Adapter RPipe Descriptor) to get the Transfer Result over an
alternative Transfer Results endpoint, if supported. The data on Transfer Results endpoint is organized as a
Transfer Result (Section 8.1.16.11.3).

7. For IN transactions, the Transfer Result includes also the information over which endpoint the IN data is to
be sent. In this case, the amount of data that follows the Transfer Result is also described in the same
Transfer Result. Note that the endpoint to be used for data of the IN transfers by Transfer Result must
match the endpoint number as directed by the corresponding Transfer Request, unless data concatenation is

 Wireless Universal Serial Bus Specification, Revision 1.1

 213

used (for short transfers). In that case, data is concatenated to Transfer Results, and is forwarded on the
same packet over Transfer Results endpoint.

8. If the endpoint associated with the specific Transfer Result with Data (for IN) is the same Transfer Result
endpoint, the Transfer Result is followed by IN transfer data from the associated Remote Pipe. The data can
be either concatenated in the same packet with the Transfer Result, or in a separate stream.

9. If the endpoint associated with a specific Transfer Result for IN is one of the Data Transfer Endpoints (IN),
the IN data will be forwarded through this endpoint, in a contiguous manner.

10. If an IN transfer does not complete successfully, the Wire Adapter will only return a Transfer Result and
will not return any data back to the host.

If the host sends more Transfer Requests than the Wire Adapter can concurrently handle (as reported in the
Wire Adapter descriptor by field wRequests, see 8.1.18.2.7) the Wire Adapter will NAK the transaction until it
has completed a pending transfer on that Remote Pipe.

8.1.3.1 Transparent Remote Pipe
A Transparent Remote Pipe is a Wire Adapter structure for OUT and IN data transfers, without the overhead of
Transfer Requests / Results. The routing of data is determined by the Remote Pipe descriptor. A specific
Transparent Remote Pipe corresponds to a specific Data Transfer Transparent Endpoint, and can be of Bulk IN /
OUT, Interrupt IN / OUT, or Isochronous IN / OUT types, corresponding to the type of Data Transfer
Transparent Endpoint used. More on operation of Transparent Remote Pipes in 8.1.10.

8.1.3.2 RPipe Descriptor
The RPipe descriptor holds all the information necessary to perform data transfers between a Wire Adapter and
an endpoint on a device connected downstream of it. It has to be configured before performing any transaction
with a downstream endpoint. Host software uses the SetRPipeDescriptor request to configure a Remote Pipe.
The descriptor may be overwritten to retarget the Remote Pipe at a different endpoint using another
SetRPipeDescriptor request. Host software is responsible to save the current state of the Remote Pipe before
retargeting a Remote Pipe to a different endpoint. Host software can get the current state of a Remote Pipe by
sending a GetRPipeDescriptor request to the Wire Adapter.

Host software can send a SetRPipeDescriptor request to a Remote Pipe only when that Remote Pipe is in the
Idle or UnConfigured state. Host software is required to correctly multiplex the available Remote Pipes over the
downstream endpoints that need to be serviced.

8.1.4 Device Wire Adapter Functional Blocks
The Wire Adapter consists of five functional blocks as illustrated in Figure 8-3.

 Wireless Universal Serial Bus Specification, Revision 1.1

 214

Figure 8-3. General DWA Function Blocks

8.1.5 Downstream Port(s)
A Device Wire Adapter has one or more downstream ports. The ports behave like those in the USB 2.0 hubs.
The Device Wire Adapter monitors the status of all of the ports and reports them to the host if there is any
change.

The number of downstream ports that is implemented on a Device Wire Adapter is indicated in the bNumPorts
field of the Wire Adapter Class Descriptor. The maximum number of downstream ports that can be
implemented on a Wire Adapter is 127. The functions and behavior of the downstream port on a DWA are the
same as the ones of a USB 2.0 Hub which are described in the Section 11.5 of the USB 2.0 Specification.

8.1.6 Upstream Port
A host communicates with a Device Wire Adapter via its upstream port. The port is used for:

 Control of the Wire Adapter function

 Notification of changes to the host

 Communicating with the devices connected downstream of the Wire Adapter (via Remote Pipes)

The upstream port of a DWA is the device side interface of a Wireless USB device which is described in
Chapter 7 of this specification.

8.1.7 Downstream Host Controller
A Device Wire Adapter has a host controller on which it creates, schedules, and manages the transaction
protocol to devices connected downstream. The downstream host controller receives the transfer information
from Transfer Requests and the associated RPipe Descriptor, or just from the RPipe Descriptor (for Transparent
RPipes) to schedule the newly added transfer of data to the system. At the same time, it manages the schedule
following the protocol of the downstream bus. The downstream host controller also controls the downstream
ports on a DWA for data transfer.

A Device Wire Adapter must be a USB 2.0 Host Controller which is described in Chapter 10 of the USB 2.0
Specification.

8.1.8 Upstream Endpoint Controller
All Wire Adapters must have at least the following three endpoints:

 Default Control Endpoint

 Transfer Requests Endpoint, of type Bulk OUT

 Transfer Results Endpoint, of type Bulk IN

On top of these three mandatory endpoints, the following types of endpoints are optional, and may be included
in a specific implementation:

 Additional Transfer Requests endpoints, of type Bulk OUT or Interrupt OUT;

 Additional Transfer Results endpoints, of type Bulk IN or Interrupt IN;

 Data Transfer Endpoints, of type Bulk OUT / IN

 Data Transfer Transparent Endpoints, of type Bulk OUT / IN, Interrupt OUT / IN or Isochronous OUT /
IN.

The specific number of endpoints of each type depends on type of application to be supported by the Wire
Adaptor.

For example, a Device Wire Adaptor which needs to support a HID class device, may use Transparent RPipe, in
conjunction with Data Transfer Transparent Endpoint, both of type Interrupt IN. Alternatively, it may use an

 Wireless Universal Serial Bus Specification, Revision 1.1

 215

optional Transfer Results endpoint of type Interrupt IN, with Transfer Results forwarded over it (as configured
in RPipe descriptor for these RPipes), concatenated with the Interrupt IN data from HID devices.

A Wire Adaptor which needs to support an MSD class device with optimal performance, may chose to rely on a
pair of Transparent RPipes of type Bulk IN and Bulk OUT respectively, in conjunction with a pair of Data
Transfer Transparent Endpoints of the same type, dedicated to MSD data transfers.

Wire Adapter which supports Audio speakers application may have to implement an Isochronous OUT
Transparent RPipe and a corresponding endpoint for this.

Selection of the specific implementation alternative for a certain application (e.g. HID, MSD or Audio
streaming) is decided by the host software (DWA driver), based on the DWA capabilities.

8.1.9 Explicit Transfer Request / Result Operation, Overview
This section describes the operation of the non-Transparent Remote Pipes by use of explicit Transfer Requests,
Transfer Results going over Transfer Requests and Transfer Results endpoints respectively.

8.1.9.1 Bulk OUT Overview
For a Host to Device (OUT) data stream, the basic model is that the Host sends data to the Wire Adapter in the
context of a Remote Pipe and the Wire Adapter moves the data to the Wired USB Endpoint, utilizing the
information present in the previously configured Remote Pipe.

The Host can determine from the Wire Adapter Descriptor and RPipe Descriptor exactly how much buffering
the Wire Adapter has allocated or can allocate to this Remote Pipe, and what type of data buffers management
the DWA implements: Static, Dynamic or Autonomous, see 8.1.15. Figure 8-4 illustrates the generic data flow
model for an OUT-bound Bulk data stream. It shows the transfer request/data stream and the feedback/transfer
status stream.

Figure 8-4. Wire Adapter Bulk OUT Operational Data Flow Model

In order to move the client buffer into the Wire Adapter with minimal latency, host software may chose to
divide the client buffer into smaller chunks and forward them to the Wire Adapter. Host is required to send data
to the Wire Adapter only in multiples of the Remote Pipe’s Maximum Packet Size field. The lone exception to
this rule is when the buffer remaining is not an even multiple of the Remote Pipe’s Maximum Packet Size field.
In this case the last data payload from the host to the Wire Adapter is the residual of the client data buffer. Host
software must not concatenate client data buffers in order to fill a data payload of the Remote Pipe’s Maximum
Packet Size field.

The size of each chunk of data transfer depends on a few factors, such as:

 Wireless Universal Serial Bus Specification, Revision 1.1

 216

a. In case of Autonomous Buffers Management (see 8.1.15.2): How much total buffering space is
left in the Wire Adaptor. For example, if the total memory available in the Wire Adaptor is 100
blocks of 2 KB, and the total size of transfer 1 MB, the host may chose to divide the transfer into
chunks of 200 KB or less.

b. Alternatively, if the DWA supports “Overbooking” of overall memory resources
(bmDWACapabilities field in Table 8-23. Device Wire Adapter Class Descriptor), the host may
send the whole transfer in one chunk. The implication of this will be that the Wire Adapter will
be congested by this single oversized transfer, and any other data transfer may not be served till
the full transfer is finished.

c. In case of Static Assignment per RPipe scheme (see 8.1.15.1), similar considerations are valid
with respect to buffering space left in the specific RPipe.

d. How much added latency the host is willing to suffer on the specific connection. For example, if
the stream of data generates 60 MB/sec, and the max allowed latency added is 4 msec, the host
must not accumulate more than (60MB/sec)x0.004 sec = ~240 KB per single transfer. If, on the
other hand, the data is generated at speed of 1 Mbps, and the max latency is 4 msec, a single
transfer must not be bigger than 1Mbps x 0.004 = ~500 bytes.

Each OUT pipe transfer request is forwarded over Transfer Requests Endpoint, and is followed by the data for
the Remote Pipe, either over the same Transfer Requests Endpoint, or over Data Transfer OUT Endpoint, as
prescribed in the Transfer Request. The Wire Adapter is required to move the data portions sent by the host
software to the Wired USB Endpoint in the same order as the host sent them.

It is important that the visibility of the original client buffer boundaries be preserved into the Wire Adapter. Per-
transfer attributes are used to inform the Device Wire Adapter how to manage the buffer portions. For example,
the attributes include information about whether this is a first, middle or end buffer portion. In addition, the host
may be allowed to queue buffer portions of more than one buffer to the Wire Adapter (at the same time).
Therefore all transfer requests associated with the same client buffer must have a unique identifier (i.e. tag).
Host software is responsible for generating unique transfer request identifiers. The Device Wire Adapter will
send these identifiers back to the host software in a transfer result when it completes a transfer request.

8.1.9.2 Bulk IN Overview
For a Device to Host (IN) data stream, once host has client buffer space available, it sends a transfer request to
the Wire adapter to begin requesting data from a downstream connected Wired USB endpoint. It ensures that it
does not ask for more data from the Wired USB endpoint than the Wire Adapter has buffering. Figure 8-5
illustrates the general data flow model of a Bulk IN data stream.

Figure 8-5. Wire Adapter IN Operational Data Flow Model

 Wireless Universal Serial Bus Specification, Revision 1.1

 217

Host may queue multiple transfer requests to the Wire Adapter. Each transfer request maps to a single client
input buffer. The size of the transfer request is allowed to be up to 2^32 - 1. If the client buffer is larger than the
Wire Adapter has buffering for, the host will split the buffer into multiple segments that the Wire Adapter can
accommodate and then manage the appropriate short packet semantics when short packets occur in the data
stream. Host software will tag each IN transfer request with a unique identifier. The size of a single transfer
segment depends on a few factors:

a. In case of Autonomous Buffers Management (see 8.1.15.2): How much buffering space is left in
the Wire Adaptor. For example, assume the total memory available in the Wire Adaptor is 100
blocks of 2 KB, and 50 of them are busy with previous transfers (OUT or IN), leaving only 100
KB of free memory. Assume farther that the total size of transfer 1 MB. The host will then have
to divide the transfer into chunks of 100 KB or less.

b. In case of Static Assignment per RPipe scheme (see 8.1.15.1), similar considerations are valid
with respect to buffering space left in the specific RPipe.

c. How much added latency the host is willing to suffer on the specific connection. For example, if
the stream of data generates 60 MB/sec, and the max allowed latency added is 4 msec, the host
must not ask more than (60MB/sec)x0.004 sec = ~240 KB per single transfer. If, on the other
hand, the data is generated at speed of 1 Mbps, and the max latency is 4 msec, a single transfer
must not be bigger than 1Mbps x 0.004 = ~500 bytes.

The maximum number of transfer requests the Device Wire Adapter may accommodate is determined by the
attribute wRequests provided in Device Wire Adapter descriptor, see 8.1.18.2.7.

The feedback data stream is multiplexed data and transfer status information. The Device Wire Adapter may
implement a shared data buffer across all Remote Pipes, OUT and IN. It may optionally implement individual
buffering for each IN Remote Pipe (Static buffers management). The granularity and frequency of data/transfer
status communications to the USB Host on the feedback stream is implementation dependent. However,
feedback communications must occur frequently enough to deliver data to the host without causing frequent
data streaming stalls.

Whenever the Device Wire Adapter observes that the associated Wired USB IN Endpoint provides a short
packet, the Device Wire Adapter will send the residual queued data to the host with a transfer status indicating
the transfer request is completed. It will then begin servicing the next transfer request queued for the Remote
Pipe at the next appropriate opportunity.

As feedback communications arrive at the Host, host software must parse the multiplexed data/status stream,
copying data into the client buffer and noting or responding to status feedback as appropriate.

8.1.9.3 Control Transfer Overview
A USB control transfer has 2 (Setup and Status only) or 3 (Setup, Data and Status) stages depending on the
request. If the size of the data stage of the USB control transfer is less than or equal to the buffer available in the
Device Wire Adapter, then the USB control transfer can be completely described in one transfer request and the
Wire Adapter is responsible for completing all stages of the USB control transfer.

If the USB control transfer has a data stage larger than the buffer available in the Device Wire Adapter, the host
will split the transfer into multiple segments. The first transfer request segment will have a valid set of bytes in
the Setup data and describe the amount of data that needs to be sent or received from the device. The
subsequent transfer request segments will not have any valid bytes in the Setup data field. A Wire Adapter must
only decode and send the Setup data included in the first transfer request segment of a multi-segment transfer
request. All segments of the transfer request must describe a buffer that is an exact multiple of the Remote
Pipe’s Maximum Packet Size field except for the final segment of the transfer request. This is required so that
the Wire Adapter can perform a status stage transaction either when a short packet occurs in one of the transfer
request segments or when the last transfer request segment has completed. Each transfer request segment is
tagged with a unique identifier, in order to allow host software to match returned status and possibly IN data
with the client request.

 Wireless Universal Serial Bus Specification, Revision 1.1

 218

8.1.9.4 Interrupt Transfer Overview
Interrupt IN-bound and OUT-bound Remote Pipes have interface and data transfer semantics essentially
identical to the Bulk IN/OUT model described in Sections 8.1.9.1 and 8.1.9.2. The two only differences are

a. Each Remote Pipe is typed as an Interrupt and includes an additional attribute that indicates the
period at which the endpoint should be provided service. The Wire Adapter has full freedom to
determine the actual servicing of the endpoint, as long as it is at least as frequent as the period
requested by the bInterval field in the Remote Pipe descriptor.

b. The host may configure the specific RPipe of the Wire Adapter to forward the Transfer Result of
the Interrupt Transfer over an optional Transfer Results endpoint of type Interrupt. The data of
the same transfer may be concatenated to the Transfer Result itself, or forwarded over a Data
Transfer Endpoint of type Interrupt. Such an implementation will enable to achieve Quality of
Service needed for this RPipe.

8.1.10 Transparent RPipe Operation, Overview
A Transparent RPipe must be used with a single Data Transfer Transparent Endpoint, in a one-to-one relation.
So, transfer of data is done without any overhead of Transfer Request / Result. Every time a chunk of data is
sent to the Transparet RPipe, it is forwarded downstream (for OUT RPipes), or upstream (for IN RPipes),
according to the definitions of the RPipe Descriptor.

The Transparent RPipe can be of types Bulk OUT / IN, Interrupt OUT / IN, or Isochronous OUT / IN. The Data
Transfer Endpoint used by the specific RPipe should be of the same type like the Transparent RPipe itself.

8.1.11 Concatenation and Aggregation of Transfer Requests and Data, Transfer
Results and Data, and DWA Notifications

In order to optimize system performance, concatenation of Transfer Requests and short chunks of Data
belonging to them, as well as aggregation of multiple Transfer Requests in a single packet is allowed. Similarly,
concatenation of Transfer Result and its data, as well as aggregation of multiple Transfer Results and DWA
Notifications is allowed. In all cases, the concatenation and aggregation is limited by the Max Packet Size used
by the Transfer Request / Result endpoints respectively. Figure 8-6 and Figure 8-7 below shows schematically
the concatenation and aggregation concept. The detailed format of the concatenated structures is discussed in
8.1.16.11 below.

Data packets
Transfer

Request / Result

Req 1 Data 3Req3 Data 4Req 4 Data NReq NReq 2 Req 5 Req N-1

</= Max Packet Size

Figure 8-6. Aggregation of multiple Transfer Requests, with Data concatenated to Transfer Requests

Res 1 Data 3Res 3 Data 4Res 4 Data NRes NRes 2 Res 5
DWA

Notification

</= Max Packet Size

Data packets

Transfer
Request / Result

DWA Notification

Figure 8-7. Aggregation of multiple Transfer Results and Notifications, with Data concatenated in some
of the Transfer Results

 Wireless Universal Serial Bus Specification, Revision 1.1

 219

8.1.12 DWA Suspend and Resume
Device Wire Adapters are bridges between Wireless and Wired USB buses. Wire Adapters must support
suspend and resume both as a device and in terms of propagating suspend/resume events between the busses it
bridges.

A Device Wire Adapter uses the mechanisms defined in Section 4.16 to manage its power consumption.
Depending on the state of the Host (Wireless Host State) it is connected to and the state the DWA is in (DWA
Upstream State) the DWA might decide to go to sleep. Table 8-1 provides the requirements of a DWA when it
wants to go to sleep and what it must do to stay in the Sleep state for each combination of these states. Note that
a DWA (once it is configured and all its downstream ports are powered) should go to sleep state if either of the
following conditions occurs:

 All of its downstream ports are in the unconnected state

 All of its downstream ports that have devices connected to them are suspended

A DWA is a bridge device in a USB hierarchy (i.e. it has a Wireless USB bus upstream and a Wired USB 2.0
bus downstream). The suspend resume management model for a DWA is derived directly from the USB 2.0
model defined in Section 7.1.7.7 of reference [1]. A summary of this model is: a DWA must always attempt to
propagate resume signaling, regardless of whether it has been enabled for remote wake itself. It will turn other
events into remote wake signaling if and only if it has been enabled for remote wake. A DWA must always
serve as the Controlling Hub in response to resume signaling from a downstream device. Table 8-1
summarizes the DWA operational requirements to meet this model. The Event column lists the wake events and
the Effect column indicates the action a DWA must take when it detects the wake event for each combination of
Wireless Host State and DWA Upstream State. The Requirement column describes DWA behavior while no
downstream wake events occur.

Table 8-1. DWA Suspend/Resume Requirements

Wireless Host
State

DWA
Upstream

State

Requirement Event Effect

Awake

Awake Normal Operation

Sleep/

Sleep+Note 1

Wake up at least once every
TrustTimeout period
Send sleep notification (Want to
Sleep) to host

Any event

If the event originated from a
suspended downstream port
then resume downstream port.
Send Reconnect or DN_Alive
as per Section 4.16.1.3
Send event notification to host

Host Sleep Note 2 Sleep
Wake up at least once every
TrustTimeout period
Check for host awake

Any event Ignore

Host Sleep+ Note 3

Sleep
Wake up at least once every
TrustTimeout period
Check for host awake

Resume
Signaling

Resume downstream port
Send Remote Wake Notification
Send Reconnect request
Send wake event notification to
host Sleep+

Wake up at least once every
TrustTimeout period
Check for host awake

Any wake
event

Note 1 Device is sleeping with remote wake enabled

Note 2 Host Sleep is where host has stopped the Wireless USB channel

Note 3 Host Sleep+ has stopped the Wireless USB channel, but will resume the Wireless USB channel on a periodic basis in order to provide
opportunities for remote-wake enabled devices to signal remote wake.

8.1.13 DWA Reset Behavior
A Device Wire Adapter can be reset either by sending it a SetAddress (0) command or by sending it a Wireless
USB Reset Device IE. After reset, DWA clears all the status, state machines and registers and sets default

 Wireless Universal Serial Bus Specification, Revision 1.1

 220

values in the descriptors. Though this is implementation dependent, it may wait for user interaction before
trying to find an available host.

To reset just the host controller in a Wire Adapter, the host issues the class specific Set Feature
(WIRE_ADAPTER_RESET) request. On reception of this command, the Wire Adapter must terminate any
transfers intended for any downstream endpoints and all RPipes must transition to the unconfigured state. The
Wire Adapter must return power-on default values for the RPipe descriptors if queried after the Reset
completes. Any data to be transferred on its upstream endpoints must be discarded and the data sequence as
well as buffer availability values on its upstream endpoints must return to their initial configured values.
Further, in the case of a DWA, all the downstream ports shall be reset and must transition to their power on
default state. After the reset completes, the DWA must transition to the Disabled state.

8.1.14 Device Control
Host software can enable, disable and/or reset the host controller in a Wire Adapter device using the Set/Clear
Wire Adapter Feature requests. See Section 8.1.16.3 and Section 8.1.16.9 for details on these commands.

In addition, host software can query the Wire Adapter host controller status using the Get Wire Adapter Status
command described in Section 8.1.16.6.

8.1.15 Buffer Configuration and Management
A Device Wire Adapter must have buffers to store the data received on its upstream port for OUT transfers and
for the data received from downstream devices for IN transfers. This buffer consists of one or more buffer
blocks. The size of each buffer block is described in the Wire Adapter Class Descriptor. The size of each block
is implementation dependent.

As far as management of the Buffers pool is concerned, three options exist and are described below: Static
Assignment per RPipe, Dynamic assignment by Host software and Autonomous Buffers Assignement by the
Wire Adapter itself. The mode used by a specific Wire Adapter implementation is defined by bmAttributes field
of the Device Wire Adapter descriptor, see 8.1.18.2.7.

8.1.15.1 Static Assignment per RPipe
 In this case (bmAttributes field of DWA Class descriptor indicates buffer management is Static), the number of
the blocks for each RPipe is static and is described in the RPipe’s Descriptor.

The number of buffer blocks per RPipe is fixed by the Wire Adapter implementation; in this case the number is
a read only field and cannot be changed in the RPipe Descriptor. This is suitable for a Wire Adapter
implementation for permanently attached devices or designed exclusively to be used with a particular class of
devices. Such Wire Adapters must not have any ports that are user accessible.

If the number of blocks per RPipe is dynamically manageable by host software, then a value of “zero” must be
reported in the wBlocks field of an RPipe Descriptor after reset. In this case, Host software is responsible to
correctly assign the amount of buffer per RPipe. The total number of available buffer blocks is determined by
the wRPipeMaxBlock field in the Wire Adapter Descriptor. This implementation choice is suitable for an all-
purpose Wire Adapter.

8.1.15.2 Dynamic Buffers Management by Host Software
In this case ((bmAttributes field of DWA Class descriptor indicates buffer management is Dynamic), the host
software is responsible for allocation of buffers per RPipe, out of the shared buffers memory pool defined in the
Device Wire Adapter descriptor by parameters wRPipeMaxBlock and wRPipeMaxBlock. That way the host may
allocate more buffers to RPipes which need to serve endpoint with enhanced requirements for throughput and
memory.

8.1.15.3 Autonomous Buffers Management by Wire Adapter
In the case of Autonomous memory management by the Wire Adapter (bmAttributes field of DWA Class
descriptor indicates buffer management is Autonomous), the pool of the buffers available in the Wire Adapter is
not assigned statically per RPipe, but rather shared between the RPipes. Host software manages this pool

 Wireless Universal Serial Bus Specification, Revision 1.1

 221

implicitly, by sending Transfer Requests to different RPipes. Unless Overbooking of memory resources is
allowed, the host shall not send any Transfer Request that exceeds the currently known buffers capacity of the
DWA.

If “Overbooking” of memory resources is supported (respective bit in bmDWACapabilities), the host may use
this. However, it is host’s responsibility to make sure that the Wire Adapter does not get congested due to
“traffic jam” on one of the RPipes. Specific strategy for this is implementation-dependent. A specific
implementation may chose to avoid overbooking, and limit Transfer Requests issued to size not exceeding the
available buffer space in the Wire Adapter. Other implementations may choose to use overbooking, in order to
minimize the overhead of Transfer Request / Result. The specific tradeoff is up to implementor.

8.1.16 DWA Requests
All Device Wire Adapter devices must implement all required standard commands in the core device
framework. All Wire Adapters must support the Class specific requests defined in this section.

Device Wire Adapters must support all required Wireless USB extensions to the Chapter 9 framework as
specified in the Wireless USB framework chapter. A DWA must support the class specific requests defined
below.

The valid values for the bmRequestType.Recipient field are extended in this class specification to allow
addressing of Ports and RPipes as illustrated in Table 8-2.

Table 8-2. Recipient Encoding Extension

Value Recipient

0 Device

1 Interface

2 Endpoint

3 Other

4 Port

5 RPipe

6-31 Reserved

Table 8-3. Device Wire Adapter Class- Requests

Request bmRequestType bRequest wValue wIndex wLength Data

Abort RPipe 00100101B ABORT_RPIPE Zero RPipe Index Zero None

Clear RPipe Feature 00100101B CLEAR_FEATURE Feature
Selector

RPipe Index Zero None

Clear Wire Adapter
Feature

00100001B CLEAR_FEATURE Feature
Selector

Interface
Number

Zero None

Get RPipe Descriptor 10100101B GET_DESCRIPTOR Descriptor
Type

RPipe Index Descriptor
Length

RPipe
Descriptor

Get RPipe Status 10100101B GET_STATUS Zero RPipe Index 1 RPipe
Status

Get Wire Adapter
Status

10100001B GET_STATUS Zero Interface
Number

4 Wire
Adapter
Status

Set RPipe Descriptor 00100101B SET_DESCRIPTOR Descriptor
Type

RPipe Index Descriptor
Length

RPipe
Descriptor

Set RPipe Feature 00100101B SET_FEATURE Feature
Selector

RPipe Index Zero None

 Wireless Universal Serial Bus Specification, Revision 1.1

 222

Set Wire Adapter
Feature

00100001B SET_FEATURE Feature
Selector

Interface
Number

Zero None

Reset RPipe 00100101B RESET_RPIPE Zero RPipe Index Zero None

Clear Port Feature 00100100B CLEAR_FEATURE Feature
Selector

Selector and
Port Index

Zero None

Get Port Status 10100100B GET_STATUS Zero Port Index 4 Port Status
and

Change
Status

Set ISOEP Attributes 00100010B SET_EP_ATTRIB Zero Endpoint
Address

6 Endpoint
Attributes

Set Port Feature 00100100B SET_FEATURE Feature
Selector

Selector and
Port Index

Zero None

Table 8-4. Device Wire Adapter Class Request Codes

bRequest Value

GET_STATUS 0

CLEAR_FEATURE 1

Reserved 2

SET_FEATURE 3

Reserved 4-5

GET_DESCRIPTOR 6

SET_DESCRIPTOR 7

Reserved 8-13

ABORT_RPIPE 14

RESET_RPIPE 15

SET_EP_ATTRIB 30

Table 8-5. Device Wire Adapter Class Feature Selector

Feature Selector Recipient Value

WIRE_ADAPTER _ENABLE Wire Adapter Device 1

WIRE_ADAPTER _RESET Wire Adapter Device 2

RPIPE_PAUSE RPipe 1

RPIPE_STALL RPipe 2

8.1.16.1 Abort RPipe
This request aborts all transfers pending on the given RPipe.

bmRequestType bRequest wValue wIndex wLength Data

00100101B ABORT_RPIPE Zero RPipe Index Zero None

Upon receipt of this request, the Wire Adapter will terminate all pending transfers for the given RPipe and place
the RPipe in the Idle state. The Wire Adapter must return a transfer completion notification, transfer result and
any data that was received and acknowledged from the targeted endpoint for all terminated transfers.

 Wireless Universal Serial Bus Specification, Revision 1.1

 223

It is a Request Error if wValue or wLength are other than as specified above or if wIndex specifies an RPipe that
does not exist.

If the Wire Adapter is not configured, the Wire Adapter’s response to this request is undefined.

8.1.16.2 Clear RPipe Feature
This request resets a value in the reported RPipe status.

bmRequestType bRequest wValue wIndex wLength Data

00100101B CLEAR_FEATURE Feature
Selector

RPipe Index Zero None

The wIndex field contains an RPipe Index. The RPipe index must be a valid RPipe index for that Wire Adapter.

The Wire Adapter must transition the state of the RPipe from its current state to the new state (see Figure 8-8)
depending on the Feature being cleared ; see Table 8-5 for the feature selector definitions that apply to an RPipe
as a recipient. Features that can be cleared with this request are:

 RPIPE_PAUSE

 RPIPE_STALL

It is a Request Error if wValue is not a feature selector listed in Table 8-5, if wIndex specifies an RPipe that does
not exist, or if wLength is not as specified above.

If the Wire Adapter is not configured, the Wire Adapter’s response to this request is undefined.

8.1.16.3 Clear Wire Adapter Feature
This request is used to clear or disable a specific feature.

bmRequestType bRequest wValue wIndex wLength Data

00100001B CLEAR_FEATURE Feature
Selector

Interface
Number

Zero None

The lower byte of wIndex contains the target interface number. Clearing a feature disables that feature; see
Table 8-5 for the feature selector definitions that apply to the controller as a recipient. Features that can be
cleared with this request are:

 WIRE_ADAPTER_ENABLE

It is a Request Error if wValue is not a feature selector listed in Table 8-5 or wLength is not as specified above.

If the interface specified does not exist, then the device responds with a Request Error.

If the Wire Adapter is not configured, the Wire Adapter’s response to this request is undefined.

8.1.16.4 Get RPipe Descriptor
This request returns the current Wire Adapter RPipe Descriptor.

bmRequestType bRequest wValue wIndex wLength Data

10100101B GET_DESCRIPTOR Descriptor
Type

RPipe Index Descriptor
Length

RPipe
Descriptor

The GetDescriptor() request for the RPipe descriptor follows the same usage model as that of the standard
GetDescriptor() request. The lower byte of wValue must be set to zero and the RPipe Index is given in the lower
twelve bits of the wIndex field.

If wLength is larger than the actual length of the descriptor, then only the actual length is returned. If wLength is
less than the actual length of the descriptor, then only the first wLength bytes of the descriptor are returned; this
is not considered an error even if wLength is zero.

 Wireless Universal Serial Bus Specification, Revision 1.1

 224

It is a Request Error if wValue or wIndex are other than as specified above.

If the Wire Adapter is not configured, the Wire Adapter’s response to this request is undefined.

8.1.16.5 Get RPipe Status
This request returns the current status for the given RPipe.

bmRequestType bRequest wValue wIndex wLength Data

10100101B GET_STATUS Zero RPipe Index 1 RPipe Status

The wIndex field contains an RPipe Index. The RPipe index must be a valid RPipe index for that Wire Adapter.
The returned value describes the current status of the specified RPipe. The meanings of the individual bits are
given in Table 8-6.

Table 8-6. RPipe State Report

Offset Field Size Value Description

0 RPipeState 1 Bitmap State of this RPipe:

Bit Description

0 1 = Idle, 0 = Active

1 1 = Paused, 0 = Not Paused

2 1 = Configured

0 = UnConfigured

3 1 = Stalled, 0 = Not Stalled

7:4 Reserved

Once an RPipe is configured then that RPipe can only be in of three states: Paused, Stalled or Not Paused

A Device Wire Adapter must not perform any transactions to the endpoint that an RPipe is targeted at if that
RPipe is in the Paused state. The RPipe must be transitioned out of the Paused state and into one of the two
substates of the Not Paused state when the Wire Adapter receives a Clear Feature: RPIPE_PAUSE command.

Similarly, a Device Wire Adapter must not perform any transactions to the endpoint that an RPipe is targeted at
if that RPipe is in the Stalled state. The RPipe must be transitioned to this state when a transfer completes with
an error condition (e.g. STALL response from the targeted endpoint or maximum number or retries is exceeded
for a transaction etc).

It is the responsibility of the DWA driver to abort any pending transfer requests if necessary, perform any
operation to clear the error condition on the targeted endpoint and finally transition that RPipe back to the Idle
state by sending the Wire Adapter a Clear Feature: RPIPE_STALL command.

The RPipe state diagram is given below.

 Wireless Universal Serial Bus Specification, Revision 1.1

 225

Figure 8-8. RPipe State Diagram

It is a Request Error if wValue or wLength are other than as specified above or if wIndex specifies an RPipe that
does not exist.

If the Wire Adapter is not configured, the Wire Adapter’s response to this request is undefined.

8.1.16.6 Get Wire Adapter Status
This request returns the current status of the Wire Adapter.

bmRequestType bRequest wValue wIndex wLength Data

10100001B GET_STATUS Zero Interface
Number

4 Wire
Adapter
Status

The lower byte of wIndex contains the target interface number. The returned value gives the current Wire
Adapter status. The meanings of the individual bits are given in Table 8-7.

Table 8-7. Wire Adapter Status Bits

Bit Description

0 Controller Enabled/Disabled: This field indicates whether the controller is enabled or disabled.

Value Description

0 Controller is disabled

1 Controller is enabled

1 Reset: This bit is set while a Reset is in progress. It is cleared by the Wire Adapter once Reset is
completed

31:2 Reserved: These bits return 0 when read.

 Wireless Universal Serial Bus Specification, Revision 1.1

 226

Figure 8-9. Wire Adapter Host Controller State Diagram

Table 8-8. Wire Adapter Enabled Behavior

WA Type Behavior

DWA Parses Schedule

Sends SOFs

HWA Parses Schedule

Sends MMCs

It is a Request Error if wValue or wLength are other than as specified above.

If the interface specified does not exist, then the device responds with a Request Error.

If the Wire Adapter is not configured, the Wire Adapter’s response to this request is undefined.

8.1.16.7 Set RPipe Descriptor
This request sets the related attributes of specified RPipe.

bmRequestType bRequest wValue wIndex wLength Data

00100101B SET_DESCRIPTOR Descriptor Type RPipe Index Descriptor
Length

RPipe Descriptor

The host supplies the new RPipe settings in the RPipe descriptor it sends in the data phase. The lower byte of
wValue must be set to zero and the RPipe Index is given in the lower twelve bits of the wIndex field.

It is a Request Error if the RPipe is not in the Idle or UnConfigured state when this command is received.

It is a Request Error if wLength is not equal to the RPipe Descriptor length.

It is a Request Error if wValue or wIndex are other than as specified above.

If the Wire Adapter is not configured, the Wire Adapter’s response to this request is undefined.

 Wireless Universal Serial Bus Specification, Revision 1.1

 227

8.1.16.8 Set RPipe Feature
This request sets the specified RPipe to the specified RPipe state.

bmRequestType bRequest wValue wIndex wLength Data

00100101B SET_FEATURE Feature Selector RPipe Index Zero None

The wIndex field contains an RPipe Index. The RPipe index must be a valid RPipe index for that Wire Adapter.

Setting a feature enables that feature; see Table 8-5 for the feature selector definitions that apply to an RPipe as
a recipient. Features that can be set with this request are:

 RPIPE_PAUSE

It is a Request Error if wValue is not a feature selector listed in Table 8-5, if wIndex specifies an RPipe that does
not exist, or if wLength is not as specified above.

If the Wire Adapter is not configured, the Wire Adapter’s response to this request is undefined.

8.1.16.9 Set Wire Adapter Feature
This request is used to set or enable a specific feature.

bmRequestType bRequest wValue wIndex wLength Data

00100001B SET_FEATURE Feature
Selector

Interface
Number

Zero None

The lower byte of wIndex contains the target interface number. Setting a feature enables that feature or starts a
process associated with that feature; see Table 8-5 for the feature selector definitions that apply to the Wire
Adapter as a recipient. Features that can be set with this request are:

 WIRE_ADAPTER_ENABLE

 WIRE_ADAPTER_RESET

It is a Request Error if wValue is not a feature selector listed in Table 8-5 or wLength is not as specified above.

If the interface specified does not exist, then the device responds with a Request Error.

If the Wire Adapter is not configured, the Wire Adapter’s response to this request is undefined.

8.1.16.10 Reset RPipe
This request resets the specified RPipe to a known state.

bmRequestType bRequest wValue wIndex wLength Data

00100101B RESET_RPIPE Zero RPipe Index Zero None

This request resets an RPipe in the Idle state. After reset, the RPipe will transition to the UnConfigured state
and transfer sequencing mechanism for the RPipe will be reset to its start state.

The host must either wait for pending transfers to drain or abort the pending transfers on this RPipe with the
ABORT_RPIPE request (see Section 8.1.16.1) before sending this request.

It is a Request Error if wValue or wLength are other than as specified above or if wIndex specifies an RPipe that
does not exist.

If the RPipe is not in an Idle state, the Wire Adapter’s response to this request is undefined.

If the Wire Adapter is not configured, the Wire Adapter’s response to this request is undefined.

 Wireless Universal Serial Bus Specification, Revision 1.1

 228

8.1.16.11 Transfer Requests
To initiate a transfer on a non-Transparent RPipe, the host must first configure an RPipe to the target endpoint
on the target device. The index of the configured RPipe is then used in the transfer requests.

After configuring the RPipe, the host submits a transfer request and an arbitrary amount of data to the Wire
Adapter via the Data Transfer Write endpoint. The amount of data accompanying the transfer request should be
controlled by the total amount of data in the transfer and the amount of buffering available to the RPipe. For
Static Assignement per RPipe scheme (see 8.1.15.1), the amount of buffer available on the RPipe is indicated in
the RPipe descriptor. For Autonomous RPipe Management scheme (see 8.1.15.2), the amount of buffer
available to the RPipe is up to the total number of the currently unused buffers in Wire Adapter. Wire Adapter
must support at least two concurrent requests per Interrupt RPipe in order to support Interrupt transfers.

8.1.16.11.1 Control Transfers
Control Transfers are performed using a Control Transfer Request as shown in Table 8-9. The format of this
request includes the setup data for the control transfer to be performed to the downstream connected device.
Table 8-11 describes the operational requirements of the Wire Adapter when it receives a Control Transfer
Request segment.

It is the responsibility of the host to insure that the amount of data to be transferred for all Control Transfer
Request segments except for the last Control Transfer Request segment is a multiple of the wMaxPacketSize
field in the RPipe descriptor so as to maintain USB short packet semantics. The Wire Adapter must send back
transfer results (See Section 8.1.16.11.3) when it completes each Control Transfer Request segment. It is the
responsibility of the Wire Adapter to perform a status stage transaction when the last Control Transfer Request
segment of the data stage is completed or if it receives a short packet from the device in any Control Transfer
Request segment of the data stage.

Sending the data for each segment of a non zero length Control Write / Read Transfer can be done as follows:

 It can be sent out in a separate data burst, either over the Transfer Request (OUT) / Result endpoint
(IN), or over a Data Transfer OUT / IN endpoints.

 Alternatively, for short Write transfers, the data may be concatenated to the Transfer Request and sent
to the Wire Adapter in the same packet.

Table 8-9. Control Transfer Request without Data concatenation

Offset Field Size Value Description

0 bLength 1 18H Length of this request

1 bRequestType 1 80H REQUEST_TYPE_CONTROL – indicates a control
transfer without data concatenation.

2 wRPipe 2 Number RPipe this transfer is targeted to

4 dwTransferID 4 Number Host-assigned ID for this transfer. All pending
dwTransferID are unique.

8 dwTransferLength 4 Number Amount of data following for an OUT transfer or the
maximum amount of returned data for an IN transfer

12 bTransferSegment 1 Bitmap Bit Description

6:0 Segment Number

7 Last Segment

 Wireless Universal Serial Bus Specification, Revision 1.1

 229

Offset Field Size Value Description

13 bmAttribute 1 Bitmap Bit Description

0 Control Transfer direction

Value Meaning

0 Control transfer write

1 Control transfer read

1 Unsecured Control Transfer.

Value Meaning

0 Regular Control transfer

1 Unsecured Control
transfer

This field is only valid for HWAs.

7:2 Reserved, must be zero

14 bEndpointUsed 1 Number This field shall identify the endpoint over which the
data shall be transferred. For OUT transfers, the
endpoint specified must be either the Transfer
Request endpoint used, or one of the Data Transfer
OUT endpoints. For IN transfers, the endpoint must
be either the Transfer Result endpoint used (per
RPipe descriptor), or one of the Data Transfer IN
endpoints.

15 bReserved 1 Zero Reserved, must be zero.

16 baSetupData 8 Byte
array

8-byte setup packet data

Table 8-10. Control Transfer Request with Data concatenation (Write)

Offset Field Size Value Description

0 bLength 1 18H + N Length of this request

1 bRequestType 1 82H REQUEST_TYPE_CONTROL_CONCATENATED –
indicates a control transfer with data concatenation.

2 wRPipe 2 Number RPipe this transfer is targeted to

4 dwTransferID 4 Number Host-assigned ID for this transfer. All pending
dwTransferID are unique.

12 bTransferSegment 1 Bitmap Bit Description

6:0 Segment Number

7 Last Segment

 Wireless Universal Serial Bus Specification, Revision 1.1

 230

Offset Field Size Value Description

13 bmAttribute 1 Bitmap Bit Description

0 Control Transfer direction

Value Meaning

0 Control transfer write

1 Control transfer read

1 Unsecured Control Transfer.

Value Meaning

0 Regular Control transfer

1 Unsecured Control
transfer

This field is only valid for HWAs.

7:2 Reserved, must be zero

14 wReserved 2 Zero Reserved, must be zero.

16 baSetupData 8 Byte
array

8-byte setup packet data

24 Data N Byte
array

Concatenated Data appendeded to the Transfer
Request using this field.

Table 8-11. WA Control Transfer Request Operational Requirements

bRequestType Segment
Number

Last
Segment Operational Requirement

REQUEST_TYPE_CONTROL
or
REQUEST_TYPE_CONTROL
_CONCATENATED

0 1 Send contents of baSetupData

The transfer request describes the complete USB
control transfer

The WA must perform a status stage transaction after
the data stage if any

REQUEST_TYPE_CONTROL
or
REQUEST_TYPE_CONTROL
_CONCATENATED

0 0 Send contents of baSetupData

The transfer request describes a USB control transfer
with the first segment of the data transfer stage

The WA must perform a status stage transaction if it
receives a short packet from the device during this
transfer segment

REQUEST_TYPE_CONTROL
or
REQUEST_TYPE_CONTROL
_CONCATENATED

>0 0 The transfer request describes a subsequent segment
of the data transfer stage of a USB control transfer

The WA must perform a status stage transaction if it
receives a short packet from the device during this
transfer segment

REQUEST_TYPE_CONTROL
or
REQUEST_TYPE_CONTROL
_CONCATENATED

>0 1 The transfer request describes the last segment of the
data transfer stage of a USB control transfer

The WA must perform a status stage transaction if it
receives a short packet from the device during this
transfer segment or at the end of this transfer segment

8.1.16.11.2 Bulk and Interrupt Transfers
Bulk and Interrupt transfers use the Bulk or Interrupt Transfer Request as shown in Table 8-12. This request
type allows large transfers to be segmented into multiple smaller transfers to avoid buffer congestion on the
Wire Adapter. When transfers are segmented, the host must insure that the amount of data for all segments

 Wireless Universal Serial Bus Specification, Revision 1.1

 231

except for the last segment is a multiple of the wMaxPacketSize field in the RPipe descriptor. This is necessary
to maintain USB short-packet semantics.

Sending the data for each segment of a non-zero length Bulk Transfer can be done as follows:

 It can be sent out in a separate data burst, either over Transfer Request (OUT) / Result (IN) endpoint,
or over a Data Transfer OUT / IN endpoint.

 Alternatively, short data transfers may be concatenated to the Transfer Request (OUT) or Transfer
Result (IN) and sent to / from the Wire Adapter in the same packet.

Table 8-12. Bulk or Interrupt Transfer Request, without data concatenations

Offset Field Size Value Description

0 bLength 1 10H Length of this request

1 bRequestType 1 81H REQUEST_TYPE_BULK_OR_INTERRUPT –
indicates a bulk/interrupt transfer without data
concatenation.

2 wRPipe 2 Number RPipe this transfer is targeted to

4 dwTransferID 4 Number Host-assigned ID for this transfer

8 dwTransferLength 4 Number Amount of data following for an OUT transfer or the
maximum amount of returned data for an IN transfer

12 bTransferSegment 1 Bitmap Bit Description

6:0 Segment Number

7 Last segment

13 bEndpointUsed 1 Number This field shall identify the endpoint over which the
data should be transferred. For OUT transfers, the
endpoint specified must be either Transfer Request
endpoint or one of the Data Transfer OUT endpoints.
For IN transfers, the endpoint must be either Transfer
Result endpoint, or one of the Data Transfer IN
endpoints. It is recommended to use Bulk endpoints
for Bulk data transfers.

14 wReserved 2 Zero Reserved for future use, must be zero.

Table 8-13. Bulk or Interrupt Transfer Request, with data concatenations (OUT)

Offset Field Size Value Description

0 bLength 1 10H + N Length of this request

1 bRequestType 1 85H REQUEST_TYPE_BULK_OR_INTERRUPT_CONCA
TENATED – indicates a bulk/interrupt transfer with
data concatenation.

2 wRPipe 2 Number RPipe this transfer is targeted to

4 dwTransferID 4 Number Host-assigned ID for this transfer

8 dwTransferLength 4 Number Amount of data following for an OUT transfer or the
maximum amount of returned data for an IN transfer

12 bTransferSegment 1 Bitmap Bit Description

6:0 Segment Number

7 Last segment

13 bReserved 1 Zero Reserved for future use, must be zero.

14 wReserved 2 Zero Reserved for future use, must be zero.

 Wireless Universal Serial Bus Specification, Revision 1.1

 232

Offset Field Size Value Description

16 Data N Byte
array

Concatenated Data for OUT transfer appendeded to
the Transfer Request using this field.

8.1.16.11.3 Transfer Result
Host software can get the Transfer Result from a Transfer Results endpoint. The Transfer Results endpoint can
be either the default Bulk IN Transfer Results endpoint, or an alternative Transfer Result endpoint, if supported.
The use of an alternative Transfer Results endpoint is determined by configuration of the RPipe descriptor, field
bTResEPNumber (see Table 8-34 in 8.1.18.2.18), If the corresponding transfer was an IN transfer
(Bulk/Interrupt IN or Control Transfer Read), the IN data shall be returned the same endpoint as requested by
the corresponding Transfer Request, unless the data is short and can be concatenated with Transfer Result. In
that case it may be sent over the Transfer Results endpoint used, concatenated with the Transfer Result.

So, the Transfer Result can be either without data concatenated to it (for OUT tranasfers and for long IN
transfers), or with data concatenated. The format for each of these two options are illustrated in Table 8-14, and
Table 8-15 repectively.

Table 8-14. Transfer Result, no data concatenated.

Offset Field Size Value Description

0 bLength 1 10H Length of this block of data (not counting transfer
data)

1 bResultType 1 83H RESULT_TYPE_TRANSFER – indicates result type,
without data concatenation

2 dwTransferID 4 Number Host-assigned ID for this transfer

6 dwTransferLength 4 Number Amount of data transferred for either OUT or IN

10 bTransferSegment 1 Bitmap Bit Description

6:0 Segment Number

7 Last segment

11 bTransferStatus 1 Number The transfer status

12 bEndpointUsed 1 Number For OUT transfers, this field shall be ignored by the
host, and shall be set to all zeros by the Wire
Adapter.

For IN transfers, this field shall identify the endpoint
over which the data is transferred. The endpoint
specified must be either Transfer Result endpoint or
one of the Data Transfer IN endpoints. The endpoint
used should match the one designated for the same
purpose by the corresponding Transfer Request.

13 bReserved 1 Reserved Reserved for future use. Shall be set to zero.

14 wReserved 2 Reserved Reserved for future use. Shall be set to zero.

Table 8-15. Transfer Result, with data concatenated.

Offset Field Size Value Description

0 bLength 1 10H + N Length of this block of data (not counting transfer
data)

1 bResultType 1 87H RESULT_TYPE_TRANSFER_CONCATENATED –
indicates result type with data concatenation

2 dwTransferID 4 Number Host-assigned ID for this transfer

6 dwTransferLength 4 Number Amount of data transferred for either OUT or IN

 Wireless Universal Serial Bus Specification, Revision 1.1

 233

Offset Field Size Value Description

10 bTransferSegment 1 Bitmap Bit Description

6:0 Segment Number

7 Last segment

11 bTransferStatus 1 Number The transfer status

12 dwReserved 4 Reserved Reserved for future use. Shall be set to zero.

16 Data N Byte
array

Concatenated Data for IN transfer appendeded to the
Transfer Result using this field.

The Transfer (or Packet) Status field in the Transfer Result (or Packet Status) returned to host software is used
to decode whether a transfer completed successfully or the type of error that occurred while performing the
transfer described by a previously received transfer request. The set of legal Transfer/Packet Status values is
defined in Table 8-16.

On top of this, the Transfer Result serves to inform the host on which IN endpoint the transfer data for IN
transactions is to be found.

Table 8-16. Transfer/Packet Status

Bit Description

5:0

Status Value Description

0 TRANSFER_STATUS_SUCCESS

The transfer completed successfully. Bit 6 and 7 are set to zero.

1 TRANSFER_STATUS_HALTED

This means that the endpoint that this transfer was attempted on is currently halted.

2 TRANSFER_STATUS_DATA_BUFFER_ERROR

There was a data buffer under/over run.

3 TRANSFER_STATUS_BABBLE

A babble was detected on the transfer. This could be either Frame babble or Packet
babble or both.

4 Reserved

5 TRANSFER_STATUS_NOT_FOUND

Returned as a response to an Abort Transfer request that has an invalid or already
completed TransferID.

6 TRANSFER_STATUS_INSUFFICIENT_RESOURCE

Returned in the transfer result when the Wire Adapter could not get enough
resources to complete a previously accepted transfer request.

5:0 7 TRANSFER_STATUS_TRANSACTION_ERROR

Returned in the transfer result when the Wire Adapter encountered a transaction
error while performing this transfer.

Bits Description

7:6 Indicates whether this was an error or a warning.

Value Meaning

00B Undefined

01B The transfer completed successfully but transaction errors
occurred which were successfully retried.

10B The transaction failed after the number of retry attempts

 Wireless Universal Serial Bus Specification, Revision 1.1

 234

Bit Description

specified in bmRetryOptions field of the RPipe descriptor.

11B Undefined

Timeout, Bad PID, CRC error are examples of DWA transaction errors.

Timeout, Bad PID, FCS error, Bad sequence number are examples of HWA
transaction errors.

8 TRANSFER_STATUS_ABORTED

The transfer was aborted by an Abort Transfer Request or by an AbortRPipe
command.

9 TRANSFER_STATUS_RPIPE_NOT_READY

The transfer request was sent to an unconfigured RPipe.

10 INVALID_REQUEST_FORMAT

This status may be sent back for one of two reasons:

 The transfer request length was not equal to the length field for the specified
request type

 The request type was unknown.

11 UNEXPECTED_SEGMENT_NUMBER

The transfer request segment numbers were not received in incrementing order
starting with zero.

12 TRANSFER_STATUS_RPIPE_TYPE_MISMATCH

The transfer type in the transfer request did not match the transfer type that the
RPipe was previously configured to.

13-63 Reserved

6 Warning This bit is set when the status is warning.

7 Error This bit is set when the status is error

8.1.16.11.4 Abort Transfer
The Abort Transfer request shown in Table 8-17 allows the host to abort a specific transfer. When the Wire
Adapter receives this request, it will abort the specified transfer, send a Transfer completion notification,
Transfer Result and any data that it received and acknowledged from the targeted endpoint back to the host. The
Transfer Result must indicate that the transfer was aborted and the number of bytes that were sent or received
before the request was aborted. The Abort Transfer request itself is acknowledged by the Wire Adapter when it
ACKs the request.

Table 8-17. Abort Transfer Request

Offset Field Size Value Description

0 bLength 1 08H Length of this request

1 bRequestType 1 84H REQUEST_TYPE_ABORT – abort the specified
transfer

2 wRPipe 2 Number RPipe on which the transfer must be aborted

4 dwTransferID 4 Number Host-assigned ID for the transfer request to be
aborted

8.1.16.12 Clear Port Feature
This request resets a value in the reported port status.

 Wireless Universal Serial Bus Specification, Revision 1.1

 235

bmRequestType bRequest wValue wIndex wLength Data

00100100B CLEAR_FEATURE Feature
Selector

Selector and
Port Index

Zero None

The wIndex field contains a Selector type in the upper byte and a Port Index in the lower byte.

Clearing a feature disables that feature; see Table 11-17 in the USB 2.0 specification for the feature selector
definitions that apply to a port as a recipient. This request format is used to clear the following features:

 PORT_ENABLE

 PORT_SUSPEND

 PORT_POWER

 PORT_INDICATOR

 C_PORT_CONNECTION

 C_PORT_RESET

 C_PORT_ENABLE

 C_PORT_SUSPEND

 C_PORT_OVER_CURRENT

See Section 11.24.2.2 of the USB 2.0 Specification for a detailed description on the usage of the Selector in
wIndex.

It is a Request Error if wValue is not a feature selector listed in Table 11-17 of the USB 2.0 Specification, if
wIndex specifies a port that does not exist, or if wLength is not as specified above.

If the Device Wire Adapter is not configured, the Device Wire Adapter’s response to this request is undefined.

8.1.16.13 Get Port Status
This request returns the current port status.

bmRequestType bRequest wValue wIndex wLength Data

10100100B GET_STATUS Zero Port Index 4 Port Status
and

Change
Status

The wIndex field contains a Port Index. The port index must be a valid port index for that Device Wire Adapter,
greater than zero.

The first word of data contains wPortStatus (refer to Table 11-21 in the USB 2.0 specification). The second
word of data contains wPortChange (refer to Table 11-20 in the USB 2.0 specification). The bit locations in the
wPortStatus and wPortChange fields correspond in a one-to-one fashion.

It is a Request Error if wValue or wLength are other than as specified above or if wIndex specifies a Port that
does not exist.

If the Device Wire Adapter is not configured, the Device Wire Adapter’s response to this request is undefined.

8.1.16.14 Set Isochronous Endpoint Attributes
This request sets the wMaxStreamDelay and wOverTheAirPacketSize for the Transparent Isochronous Endpoint,
configured as continuously scalable isochronous endpoint specified on the DWA.

bmRequestType bRequest wValue wIndex wLength Data

 Wireless Universal Serial Bus Specification, Revision 1.1

 236

00100010B SET_EP_ATTRIB Zero Endpoint Address 6 Endpoint
Attributes

On reception of this request, the DWA will expect to receive or send data as per the wOverTheAirPacketSize
specified. The lower byte of wIndex specifies the target endpoint. The format of the endpoint attributes structure
is given in Table 8-18

Table 8-18. Endpoint Attributes Buffer Format

Offset Field Size Value Description

0 wMaxStreamDelay 2 Number The actual stream delay as determined by the host.
This field indicates the amount of delay in 128
microsecond units. See Table 7-29 for details.

2 wOverTheAirPacketSize 2 Number New Maximum packet size this endpoint is capable
of sending or receiving over the air This must be
less than or equal to the original over-the-air
Maximum packet size.

4 wReserved 2 Zero Reserved for future use, must be zero.

On reception of this request, system software will first determine that it can reserve bandwidth on the Wireless
USB channel before sending this request to the DWA.

If the memory management of the Wire Adapter is of type Dynamic Memory Management, the host must
ensure that the buffering allocated to the RPipe is sufficient to support the wMaxStreamDelay value in this
request.

It is a Request Error if wValue or wLength are other than as specified above.

If the endpoint specified does not exist, then the device responds with a Request Error.

If the RPipe that is currently configured for this endpoint in not in the Idle state, the Device Wire Adapter’s
response to this request is undefined.

If the Device Wire Adapter is not configured, the Device Wire Adapter’s response to this request is undefined.

8.1.16.15 Set Port Feature
This request sets a value in the reported port status.

bmRequestType bRequest wValue wIndex wLength Data

00100100B SET_FEATURE Feature
Selector

Selector and
Port Index

Zero None

The wIndex field contains a Selector in the upper byte and a Port Index in the lower byte. The port index must
be a valid port index for that Device Wire Adapter, greater than zero.

Setting a feature enables that feature or starts a process associated with that feature; Table 11-17 in the USB 2.0
specification for the feature selector definitions that apply to a port as a recipient. Features that can be set with
this request are:

 PORT_RESET

 PORT_SUSPEND

 PORT_POWER

 PORT_TEST

 PORT_INDICATOR

 Wireless Universal Serial Bus Specification, Revision 1.1

 237

See Section 11.24.2.2 of the USB 2.0 Specification for a detailed description on the usage of the Selector in
wIndex.

It is a Request Error if wValue or wLength are other than as specified above or if wIndex specifies a Port that
does not exist.

If the Device Wire Adapter is not configured, the Device Wire Adapter’s response to this request is undefined.

8.1.17 Notification Information
Asynchronous notification messages are sent back on the default Transfer Results endpoint.

Device Wire Adapter specific notifications are detailed in Section 8.1.18.3.

8.1.18 DWA Interfaces, Descriptors and Control
This section provides details on the DWA specific interfaces and includes all the descriptors that a DWA should
present to host software. It also defines the DWA class specific control transfers and describes how isochronous
streaming is supported on a DWA.

8.1.18.1 DWA Transparent RPipe Interface
This interface is reported only by Device Wire Adapters that support Transparent RPipes in conjunction with
Data Transfer Transparent endpoints. A Transparent RPipe can be used whenever there is a need to avoid the
overhead of Transfer Requests / Results for endpoints on downstream connected devices. The number of Data
Transfer Transparent endpoints in this interface determines the upper bound of downstream endpoints the
DWA can support simultaneously in “transparent” way. The DWA Data Transfer Transparent endpoints have
special configuration procedures described later on 8.1.10. One particular example for use of such scheme is
Isochronous streaming discussed in next section. Once the Data Transfer Tansparent endpoints are configured,
they behave like standard Wireless USB endpoints, be it bulk, interrupt or isochronous endpoints as described in
Section 8.1.10 on the upstream side, and as a regular wired USB endpoints on the downstream side. For OUT
data transfers, the DWA will start transferring data to the downstream endpoint after data has arrived from the
corresponding upstream endpoint. For IN data transfers, the DWA will start performing the upstream transfer as
soon as it receives an IN transaction on the downstream wired USB bus. The association from the downstream
endpoint to its corresponding upstream endpoint is specified in the RPipe descriptor. See Section 8.1.18.4 for
details.

8.1.18.1.1 DWA Transparent Bulk OUT and Bulk IN Data Flow Overview
In case of Bulk OUT, the DWA collects data on the upstream Bulk OUT endpoint (as per bmAttribute field of
the RPipe descriptor, see Table 8-34. Device Wire Adapter RPipe Descriptor), and forwards the data to the
downstream endpoint associated with the given RPipe. The upstream endpoint is treated by the WUSB host as a
regular Bulk OUT endpoint. The downstream endpoint is also treated by the wired USB host of the DWA as a
regular Bulk OUT endpoint. Packets from the upstream endpoint are fragmented to meet the wired
wMaxPacketSize limits of the downstream endpoint. If “Zero-length packet insert support” bit in bmAttribute
field of the RPipe descriptor is set, the DWA shall make sure that either a short packet or a zero-length packet is
sent to the downstream endpoint corresponding to data of the upstream packet with “last” flag set.

In case of Bulk IN, the DWA collects data on the downstream endpoint associated with it, and forwards the
collected data to the upstream endpoint, again as per bmAttribute field of the RPipe descriptor. Also in this case,
both upstream and downstream andpoints are treated as regular wireless Bulk IN and wired Bulk IN endpoints,
respectively. Whenever the DWA encounters a short packet or a zero-length packet on the downstream, it shall
include include a packet with “last” flag set on the upstream, signifying end of transfer.

8.1.18.1.2 DWA Transparent Interrupt OUT and Interrupt IN Data Flow Overview
In case of Interrupt IN transfers by Transparent RPipe, the DWA shall forward a single Interrupt IN packet on
the upstream wireless connection per single Interrupt IN packet on the downstream connection. No aggregation
of data is allowed. So, the bInterval of the associated wired Interrupt IN endpoint should exceed the
bOverTheAirInterval of the corresponding wireless endpoint, as configured by the RPipe descriptor. In case the

 Wireless Universal Serial Bus Specification, Revision 1.1

 238

polling of the upstream endpoint is late (due to bad PHY link or any other reason), the DWA shall skip polling
of the downstream endpoint till the PHY link is restored and forwarding of data from the downstream endpoint
to the upstream is possible again.

In case of Interrupt OUT transfers by Transparent RPipe, the DWA shall forward a single Interrupt OUT packet
on the downstream wired connection per single Interrupt OUT packet on the upstream connection. No
aggregation of data is allowed. So, the bInterval of the associated wired Interrupt OUT endpoint should be
lower than the bOverTheAirInterval of the corresponding wireless endpoint, as configured by the RPipe
descriptor.

8.1.18.1.3 DWA Transparent Isochronous Streaming Overview
A Device Wire Adapter supports isochronous transfers only if it has an upstream Data Transfer Transparent
Isochronous endpoint. When host is requested to transfer Isochronous data from a device connected
downstream of a DWA, the host software driver for the DWA will establish a corresponding Isochronous
stream to an upstream Data Transfer Transparent isochronous endpoint on the DWA. The host will transfer the
data as a stream to/from the DWA. For isochronous OUT data transfers, the DWA will start performing the
transfer as per the timestamp information present in Wireless USB header that is sent with every Wireless USB
isochronous packet. For isochronous IN data transfers, the DWA will start performing the transfer as soon as it
receives the first IN transaction on the upstream Wireless USB bus.

8.1.18.2 DWA Descriptors
Device Wire Adapter descriptors are derived from the general USB device framework. Device Wire Adapter
descriptors define a Device Wire Adapter device. The host accesses these descriptors through the Device Wire
Adapter’s control endpoint. The Device Wire Adapter class pre-defines certain fields in standard USB
descriptors. Other fields are either implementation-dependent or not applicable to this class.

The Device Wire Adapter class defines additional device class descriptors. Vendor-specific descriptors may be
defined.

Device Wire Adapters must support standard Wireless USB device commands as defined in the Framework
chapter of this specification.

 Wireless Universal Serial Bus Specification, Revision 1.1

 239

The hieararchy of the DWA descriptors structure is summarized in

Figure 8-10 below.

 Wireless Universal Serial Bus Specification, Revision 1.1

 240

Figure 8-10. Hierarchy of DWA Descriptors

8.1.18.2.1 Device Descriptor
Table 8-19. Device Descriptor

Offset Field Size Value Description

0 bLength 1 12H Size of this descriptor in bytes, including this field.

1 bDescriptorType 1 1 DEVICE Descriptor Type.

2 bcdUSB 2 250H Wireless USB Specification Release Number in
Binary-Coded Decimal. This field identifies the
release of the Wireless USB Specification with which
this device and its descriptors are compliant.

4 bDeviceClass 1 Number

5 bDeviceSubClass 1 Number

6 bDeviceProtocol 1 Number

7 bMaxPacketSize0 1 FFH Maximum packet size for endpoint zero.

 Wireless Universal Serial Bus Specification, Revision 1.1

 241

8 idVendor 2 ID Vendor ID (assigned by the USB-IF)

10 idProduct 2 ID Product ID (assigned by manufacturer)

12 bcdDevice 2 BCD Device release number in binary-coded-decimal

14 iManufacturer 1 Index Index of string descriptor describing manufacturer

15 iProduct 1 Index Index of string descriptor describing product

16 iSerialNumber 1 Index Index of string descriptor describing product serial
number

17 bNumConfigurations 1 1 Number of possible configurations

If the Device Wire Adapter exports a Transparent RPipe interface then it must use an Interface Association
Descriptor to group the two interfaces (Data Transfer Interface and Transparent Data Transfer Interface)
together so that one driver is loaded for both. In such a case the Device Wire Adapter must set bDeviceClass,
bDeviceSubClass and bDeviceProtocol fields to EFH, 02H and 02H respectively. This class code is defined as
the Wire Adapter Multifunction Peripheral (WAMP) class code.

If the Device Wire Adapter does not support downstream Data Transfer Transparent endpoints then
bDeviceClass s, bDeviceSubClass and bDeviceProtocol must be set to zero in the device descriptor. Also,
bmDWACapabilities field in the Device Wire Adapter descriptor shall indicate no support for Transparent
Rpipe interface.

8.1.18.2.2 Binary Device Object (BOS) Descriptor
A Device Wire Adapter must define a BOS descriptor. Host can read the BOS descriptor using the
GetDescriptor() request with a descriptor type set to BOS.

A Device Wire Adapter must always have a Wireless USB Device Capabilities on UWB descriptor as part of its
BOS Descriptor set. The values within the Wireless USB Device Capabilities on UWB descriptor are
implementation specific, see Section 7.4.1.

8.1.18.2.3 Configuration Descriptor
Table 8-20. Configuration Descriptor

Offset Field Size Value Description

0 bLength 1 09H Size of this descriptor in bytes, including this field.

1 bDescriptorType 1 02H CONFIGURATION Descriptor Type

2 wTotalLength 2 Number Total length of all descriptors in this configuration

4 bNumInterfaces 1 Number Number of interfaces included in this configuration

5 bConfigurationValue 1 Number Value to use to reference this configuration

6 iConfiguration 1 Index Index of String Descriptor describing this
configuration

7 bmAttributes 1 Bitmap Configuration characteristics

Bit Description

3:0 Reserved (reset to zero)

4 Battery-powered

5 Remote Wakeup

6 Self-powered

7 Reserved (set to one)

Self-powered (D6) must always be set to a one
(1B).

 Wireless Universal Serial Bus Specification, Revision 1.1

 242

Offset Field Size Value Description

If the DWA supports remote wakeup, D5 must be
set to one.

8 bMaxPower 1 0 Reserved and zero for Wireless USB Device.

8.1.18.2.4 Security Descriptors
The Device Wire Adapter has security capabilities of its own (on its logical upstream port), it reports those by
responding to a Get Descriptor (SECURITY type) request, see Section 7.4.5.

8.1.18.2.5 Interface Association Descriptor
If the Device Wire Adapter has a Transparent RPipe interface, then it can use an Interface Association
Descriptor to describe the two interfaces that it uses so that host software can enumerate the device correctly.

This is particularly useful when the Transparent RPipe interface has several alternate settings, as it may be
useful in implementations where the same Transparent RPipe should serve several different applications, e.g.
sometimes Video and sometimes Mass-Storage Device class.

An alternative way to define a Transparent RPipe in a design would be to use the Device Wire Adapter
Endpoints Mapping Descriptor, as described in 8.1.18.2.8.

Table 8-21. Interface Association Descriptor

Offset Field Size Value Description

0 bLength 1 08H Size of this descriptor in bytes, including this field.

1 bDescriptorType 1 0BH INTERFACE_ASSOCIATION Descriptor Type

2 bFirstInterface 1 00H Interface number of the first interface

3 bInterfaceCount 1 02H Number of contiguous interfaces associated with this
function. This count includes this first interface as
well.

4 bFunctionClass 1 E0H Wireless Controller

5 bFunctionSubClass 1 02H Wireless USB Wire Adapter

6 bFunctionProtocol 1 02H Device Wire Adapter Control/Data Streaming
interface

7 iFunction 1 Index Index of a string descriptor that describes this Wire
Adapter

8.1.18.2.6 Data Transfer Interface Descriptor
The Device Wire Adapter interface descriptor and the other descriptors that are part of this interface describe
the endpoints on the DWA that are necessary to communicate with devices connected downstream of the
Device Wire Adapter.

Table 8-22. Data Transfer Interface Descriptor

Offset Field Size Value Description

0 bLength 1 09H Size of this descriptor in bytes, including this field.

1 bDescriptorType 1 04H INTERFACE Descriptor Type

2 bInterfaceNumber 1 00H Number of this interface.

3 bAlternateSetting 1 00H Value used to select this alternate setting for the
interface identified in the prior field

 Wireless Universal Serial Bus Specification, Revision 1.1

 243

4 bNumEndpoints 1 03H Number of endpoints used by this interface.

5 bInterfaceClass 1 E0H Wireless Controller

6 bInterfaceSubclass 1 02H Wireless USB Wire Adapter

7 bInterfaceProtocol 1 02H Device Wire Adapter Control/Data Streaming
interface

8 iInterface 1 Index Index of String Descriptor describing this interface

8.1.18.2.7 Device Wire Adapter Class Descriptor
This descriptor describes the characteristics of the DWA to host software. This includes but is not limited to the
amount of buffering available on the DWA, the number of RPipes, the number of ports and if ports are user
accessible.

Table 8-23. Device Wire Adapter Class Descriptor

Offset Field Size Value Description

0 bLength 1 Number Size of this descriptor in bytes, including this field.

1 bDescriptorType 1 21H Wire Adapter Descriptor Type

2 bcdWAVersion 2 0110H WA Class Specification Release Number in Binary-Coded
Decimal. This field identifies the release of the WA Class
Specification with which this interface is compliant.

4 bNumPorts 1 Number The number of ports supported by this Wire Adapter

 Wireless Universal Serial Bus Specification, Revision 1.1

 244

Offset Field Size Value Description

5 bmAttributes 1 Bitmap Bit Description

0 Logical Power Switching Mode

0: Ganged power switching (all
ports’ power at once)

1: Individual port power switching

1 Over-current Protection Mode

0: Global Over-current Protection.
The Wire Adapter reports over-
current as a summation of all
ports’ current draw, without a
breakdown of individual port
over-current status.

1: Individual Port Over-current
Protection. The Wire Adapter
reports over-current on a per-
port basis. Each port has an
over-current status.

2 Port Indicators Supported

0: Port Indicators are not supported
on its downstream facing ports
and the PORT_INDICATOR
request has no effect.

1: Port Indicators are supported on
its downstream facing ports and
the PORT_INDICATOR request
controls the indicators.

3 Multi-TT Supported

0: Multi-TT is not supported on its
downstream.

1: Multi-TT is supported on its
downstream.

5:4 Buffer Management (see 8.1.15 and
8.1.18.2.18 for details):

00: Static buffers memory
management

01: Dynamic buffers memory
management

10: Autonomous buffers memory
management

11: Reserved

7:5 Reserved

6 wNumRPipes 2 Number The number of RPipes supported by this Wire Adapter

8 wRPipeMaxBloc
k

2 Number The maximum number of buffer blocks assignable to all
RPipes.

10 bRPipeBlockSize 1 Number The size of an RPipe buffer block, expressed in
(bRPipeBlockSize +1) multiples of 512 bytes. For example, 6
means the block size is 3584 bytes.

11 bPwrOn2PwrGo
od

1 Number Time (in 2 ms intervals) from the time the power-on sequence
begins on a port until power is good on that port. The USB
System Software uses this value to determine how long to
wait before accessing a powered-on port.

12 bNumMMCIEs 1 Number This field is not used by DWAs and must be set to 0.

13 bReserved 1 Zero Reserved for future use, must be zero.

 Wireless Universal Serial Bus Specification, Revision 1.1

 245

Offset Field Size Value Description

14 wRequests 2 Number The number of concurrent requests that can be assigned to
this Wire Adapter. This is a read only field.

16 bmDWACapabilit
ies

4 Bitmap Indicates which of the optional features of the Device Wire
Adapter are supported by a particular implementation.

Bit value definition:

 0B Feature is supported.

 1B Feature is not supported.

This bitmap corresponds to the following specific features:

0B Reserved, must be set to zero.

1B Concatenation of Transfer Request /
Result and Data

2B Aggregation of multiple Transfer
Requests / Results

3B Overbooking of total memory (valid only
in case Autonomous buffer
management is used)

4B –
31B

Reserved. Must be set to zero.

20 wMaxConcatena
tedDataLength

2 Number The maximum length of data that could be concatenated to a
transfer request / transfer result transactions. This value can
be between 0 and (wOverTheAirPacketSize –
max(RequestStructureSize, ResultStructureSize)).

0 shall mean no concatenation data to transfer result / transfer
request is allowed. This value shall correlate with the bit in
bmDWACapabilities field corresponding to Concatenation.

22 DeviceRemovabl
e

Variabl
e

Bitmap Indicates if a port has a removable device attached. This field
is reported on byte-granularity. Within a byte, if no port exists
for a given location, the field representing the port
characteristics returns 0.

Bit value definition:

0B Device is removable.

1B Device is non-removable

This is a bitmap corresponding to the individual ports on the
hub:

Bit 0 Reserved.

Bit 1 Port 1

Bit 2 Port 2

....

Bit n Port n (implementation-dependent, up to a
maximum of 127 ports).

8.1.18.2.8 Device Wire Adapter Endpoints Mapping Descriptor
This descriptor specifies the types of endpoints supported by the Wire Adapter. Namely, each endpoint type (i.e.
Transfer Requests / Results, Data Transfer endpoints, Transparent endpoints, etc.) is specified, per endpoint
supported (not including the default control endpoint).

Table 8-24. Device Wire Adapter Endpoints Mapping Descriptor

Offset Field Size Value Description

0 bLength 1 2xN+2 Size of this descriptor in bytes, including this field.

 Wireless Universal Serial Bus Specification, Revision 1.1

 246

Offset Field Size Value Description

1 bDescriptorType 1 23H Device Wire Adapter Endpoints Endpoints Mapping
Descriptor Type

2 bEndpointAddress #1 1 Bitmap Number + Direction of endpoint #1:

3:0 Number of the endpoint

6:4 reserved. Must be set to zero.

7 Direction of the endpoint:

 0 – OUT

 1 – IN

3 bEndpointType #1 1 Number Type of endpoint #1:

1 – Default (Bulk OUT) Transfers Request endpoint

2 – Default (Bulk IN) Transfers Results endpoint

3 – Optional (Bulk / Interrupt OUT) Transfers Request
endpoint

4 - Optional (Bulk / Interrupt IN) Transfers Results
endpoint

5 – Data Transfer endpoint

6 – Transparent Data Transfer endpoint (Allowed only if
the same Transparent Transfer Endpoint is not defined
already by 8.1.18.2.5 Interface Association Descriptor.

Other values are reserved.

4 bEndpointAddress #2 1 Number Number and Direction of endpoint #2

5 bEndpointType #2 1 Number Type of endpoint #2

.. ………………………. .. … ………………………

.. ………………………. .. … ………………………

2(N-1) bEndpointAddress #(N-1) 1 Number Number and Direction of endpoint #(N-1)

2(N-1)
+ 1

bEndpointType #(N-1) 1 Number Type of endpoint #(N-1)

2N bEndpointAddress #N 1 Number Number and Direction of endpoint #N

2N+1 bEndpointType #N 1 Number Type of endpoint #N

8.1.18.2.9 Transfer Requests Endpoint Descriptor

Table 8-25. Transfer Requests Endpoint Descriptor

Offset Field Size Value Description

0 bLength 1 07H Size of this descriptor in bytes, including this field.

1 bDescriptorType 1 05H ENDPOINT Descriptor Type

2 bEndpointAddress 1 Number The address of this endpoint

3 bmAttributes 1 Bitmap For the default Bulk OUT Transfer Requests
Endpoint must be set to X0000010b

For additional optional Transfer Requests endpoints
may be set either to X0000010b (for bulk OUT), or
X0000011b (for Interrupt OUT)

Bit 7 is set if Data packet size adjustment supported
on this Wire Adapter

4 wMaxPacketSize 2 Number Maximum packet size of this endpoint

 Wireless Universal Serial Bus Specification, Revision 1.1

 247

6 bInterval 1 Number Reserved. Shall be set to zero, unless this descriptor
is for an Interrupt endpoint. For Interrupt OUT
endpoint shall be set according to rules of Interrupt
Endpoint. Specific value is implementation
dependent.

8.1.18.2.10 Transfer Results Endpoint Descriptor

Table 8-26. Transfer Results Endpoint Descriptor

Offset Field Size Value Description

0 bLength 1 07H Size of this descriptor in bytes, including this field.

1 bDescriptorType 1 05H ENDPOINT Descriptor Type

2 bEndpointAddress 1 Number The address of this endpoint

3 bmAttributes 1 Bitmap For the default Bulk OUT Transfer Results Endpoint
must be set to X0000010b

For additional optional Transfer Results endpoints
may be set either to X0000010b (for bulk IN), or
X0000011b (for Interrupt IN)

Bit 7 is set if Data packet size adjustment supported
on this Wire Adapter

4 wMaxPacketSize 2 Number Maximum packet size of this endpoint

6 bInterval 1 Number Shall be set to zero for Bulk IN endpoint. For
Interrupt IN endpoint shall be set according to rules
of Interrupt Endpoint. Specific value is
implementation dependent.

8.1.18.2.11 Transfer Results Endpoint Companion Descriptor
Table 8-27. Transfer Results Endpoint Companion Descriptor

Offset Field Size Value Description

0 bLength 1 0AH Size of this descriptor in bytes

1 bDescriptorType 1 17 WIRELESS_ENDPOINT_COMPANION Descriptor
Type

2 bMaxBurst 1 Number The max burst size of this endpoint

3 bMaxSequence 1 Number The maximum sequence used for data bursting.

Valid values are in the range 2 to 32.

4 wMaxStreamDelay 2 00H Maximum supported stream delay.

The field is reserved and not used for Bulk or
Interrupt endpoints.

6 wOverTheAirPacketSize 2 00H Maximum packet size this endpoint is capable of
receiving over the air.

8 bOverTheAirInterval 1 00H Interval for polling endpoint for data transfers.

Use of this field is as defined for standard Wireless
USB Endpoint Companion Descriptor, in Table
7-29.

9 bmCompAttributes 1 00H The field is reserved and not used for Bulk
endpoints.

8.1.18.2.12 Transfer Requests Endpoint Companion Descriptor

 Wireless Universal Serial Bus Specification, Revision 1.1

 248

Table 8-28. Transfer Requests Endpoint Companion Descriptor

Offset Field Size Value Description

0 bLength 1 0AH Size of this descriptor in bytes

1 bDescriptorType 1 17 WIRELESS_ENDPOINT_COMPANION Descriptor
Type

2 bMaxBurst 1 Number The max burst size of this endpoint

3 bMaxSequence 1 Number The maximum sequence used for data bursting.

Valid values are in the range 2 to 32.

4 wMaxStreamDelay 2 00H Maximum supported stream delay.

The field is reserved and not used for Bulk or
Interrupt endpoints.

6 wOverTheAirPacketSize 2 00H Maximum packet size this endpoint is capable of
receiving over the air.

8 bOverTheAirInterval 1 00H Interval for polling endpoint for data transfers.

Use of this field is as defined for standard Wireless
USB Endpoint Companion Descriptor, in Table
7-29.

9 bmCompAttributes 1 00H The field is reserved and not used for Bulk
endpoints.

8.1.18.2.13 Data Transfer Endpoint Descriptor
Table 8-29. Data Transfer Endpoint Descriptor

Offset Field Size Value Description

0 bLength 1 07H Size of this descriptor in bytes, including this field.

1 bDescriptorType 1 05H ENDPOINT Descriptor Type

2 bEndpointAddress 1 Number The address and direction of this endpoint

3 bmAttributes 1 Bitmap X0000010b for Bulk endpoint,

X0000011b for Interrupt endpoint.

Bit 7 is set if Data packet size adjustment supported
on this Wire Adapter

4 wMaxPacketSize 2 Number Maximum packet size of this endpoint

6 bInterval 1 Number As specified for the standard endpoint descriptor for
WUSB devices in Table 7-28.

8.1.18.2.14 Data Transfer Endpoint Companion Descriptor
Table 8-30. Data Transfer Endpoint Companion Descriptor

Offset Field Size Value Description

0 bLength 1 0AH Size of this descriptor in bytes

1 bDescriptorType 1 17 WIRELESS_ENDPOINT_COMPANION Descriptor
Type

2 bMaxBurst 1 Number The max burst size of this endpoint

3 bMaxSequence 1 Number The maximum sequence used for data bursting.

Valid values are in the range 2 to 32.

 Wireless Universal Serial Bus Specification, Revision 1.1

 249

Offset Field Size Value Description

4 wMaxStreamDelay 2 00H Maximum supported stream delay.

The field is reserved and not used for Bulk and
Interrupt endpoints.

6 wOverTheAirPacketSize 2 00H Maximum packet size this endpoint is capable of
receiving over the air.

The field is reserved and not used for Bulk and
Interrupt endpoints.

8 bOverTheAirInterval 1 00H Interval for polling endpoint for data transfers.

Use of this field is as defined for standard Wireless
USB Endpoint Companion Descriptor, in Table
7-29.

9 bmCompAttributes 1 00H Use of this field is as defined for standard Wireless
USB Endpoint Companion Descriptor, in Table
7-29.

8.1.18.2.15 Transparent RPipe Interface Descriptor
This interface and its associated descriptors are optional. They are only present on Device Wire Adapters that
support Transparent RPipe Interface.

Table 8-31. Transparent RPipe Interface Descriptor

Offset Field Size Value Description

0 bLength 1 09H Size of this descriptor in bytes, including this field.

1 bDescriptorType 1 04H INTERFACE Descriptor Type

2 bInterfaceNumber 1 01H Number of this interface.

3 bAlternateSetting 1 00H Value used to select this alternate setting for the
interface identified in the prior field

4 bNumEndpoints 1 Number Number of endpoints used by this interface.

Legal values are 1 through 28.

5 bInterfaceClass 1 E0H Wireless Controller

6 bInterfaceSubclass 1 02H Wireless USB Wire Adapter

7 bInterfaceProtocol 1 03H Device Wire Adapter Transparent RPipe Interface

8 iInterface 1 Index Index of String Descriptor describing this interface

8.1.18.2.16 Data Transfer Transparent Endpoint Descriptor
Table 8-32. Transparent Data Transfer Endpoint Descriptor

Offset Field Size Value Description

0 bLength 1 07H Size of this descriptor in bytes, including this field.

1 bDescriptorType 1 05H ENDPOINT Descriptor Type

2 bEndpointAddress 1 Number The address of this endpoint

3 bmAttributes 1 Bitmap Bits 1:0 can take one of the following values:

01 - Isochronous endpoint;

10 – Bulk endpoint,

11 – Interrupt endpoint.

4 wMaxPacketSize 2 Number Use of this field is as defined for standard Wireless
USB Endpoint Companion Descriptor, in Table 7-29

 Wireless Universal Serial Bus Specification, Revision 1.1

 250

6 bInterval 1 00H Use of this field is as defined for standard Wireless
USB Endpoint Companion Descriptor, in Table
7-29.

8.1.18.2.17 Data Transfer Transparent Endpoint Companion Descriptor
Table 8-33. Isochronous Streaming OUT Endpoint Companion Descriptor

Offset Field Size Value Description

0 bLength 1 0AH Size of this descriptor in bytes

1 bDescriptorType 1 17 WIRELESS_ENDPOINT_COMPANION Descriptor
Type

2 bMaxBurst 1 Number The value of this field must adhere to the rules
specified in Section 4.7.1

3 bMaxSequence 1 Number The maximum sequence used for data bursting.

Valid values are in the range 2 to 32.

4 wMaxStreamDelay 2 Number Use of this field is as defined for standard Wireless
USB Endpoint Companion Descriptor, in Table
7-29.

6 wOverTheAirPacketSize 2 Number Use of this field is as defined for standard Wireless
USB Endpoint Companion Descriptor, in Table
7-29.

8 bOverTheAirInterval 1 00H Use of this field is as defined for standard Wireless
USB Endpoint Companion Descriptor, in Table
7-29.

In case of Isochronous endpoint: This must be a
dynamic switching capable endpoint and hence the
value must be set to zero. See Section 7.4.4for
details.

9 bmCompAttributes 1 02H This endpoint supports continuously scalable
dynamic switching.

8.1.18.2.18 Device Wire Adapter RPipe Descriptor
The Wire Adapter RPipe descriptors are not returned as part of the configuration descriptor for a DWA. Host
software can get each RPipe descriptor by sending a Get RPipe Descriptor (See Section 8.1.16.4) request to the
DWA. The format of the Wire Adapter RPipe descriptor and the description of the fields is given in Table 8-34.

Table 8-34. Device Wire Adapter RPipe Descriptor

Offset Field Size Value Description

0 bLength 1 1CH Size of this descriptor in bytes, including
this field. This is a read only field.

1 bDescriptorType 1 22H Wire Adapter RPipe Descriptor Type. This
is a read only field.

2 wRPipeIndex 2 Number Number of this RPipe. Zero-based value
identifying the index in the array of
concurrent RPipes supported by this Wire
Adapter. This is a read only field.

4 wReserved 2 Zero Reserved for future use, must be zero.

6 wBlocks 2 Number The number of buffer blocks assigned to
this RPipe.

In case the DWA supports Autonomous
memory management, this field is reserved.
It must be set to zero by the DWA, and can

 Wireless Universal Serial Bus Specification, Revision 1.1

 251

not be changed by Host software.

In case the DWA supports dynamic memory
management by host, the value in this field
is initialized to zero by DWA, and the Set
RPipe Descriptor request can be used by
the host to set the number of blocks to be
assigned to this RPipe.

In case the DWA does not support either
Autonomous or Dynamic memory
management (fixed memory allocation per
RPipe), the value in this field is not zero and
is initialized to the number of blocks
assigned to this RPipe. It cannot be
changed by host software (Read only
value).

 Wireless Universal Serial Bus Specification, Revision 1.1

 252

Table 8-34. Device Wire Adapter RPipe Descriptor (cont.)

Offset Field Size Value Description

8 wMaxPacketSize 2 Number Maximum packet size that this RPipe will use to
communicate with attached device.

10 bHSHubAddress 1 Number This is the address of the attached device’s parent
high speed hub. This number is used only when a
full/low device is connected to the DWA through a
high speed hub. This field must be set to Zero if the
full/low speed device is directly connected to the
DWA.

This field is reserved if the bSpeed field is set to
High Speed.

11 bHSHubPort 1 Number This is the Port number on which the attached
device is connected to its parent high speed hub.
This number is used only when a full/low device is
connected to the DWA through a high speed hub.
This field must be set to Zero if the full/low speed
device is directly connected to the DWA.

This field is reserved if the bSpeed field is set to
High Speed.

12 bSpeed 1 Number The speed of device to be targeted by RPipe.

Value Description

00B Full-Speed (12Mbs)

01B Low-Speed (1.5Mbs)

10B High-Speed (480 Mbs)

11B Reserved

13 bDeviceAddress 1 Number Address to be used with attached device

14 bEndpointAddress 1 Number Endpoint Address to be used with this RPipe.

Bit Description

3:0 The endpoint number

6:4 Reserved; set to zero

7 Direction, ignored for control
endpoints

0 = OUT endpoint

1 = IN endpoint

15 bDataSequence 1 Number Current data sequence. This is the next data
sequence value to be used when sending data to
the endpoint that this RPipe is targeted at.

16 dwCurrentWindow 4 Number Reserved and must be set to zero.

20 bMaxDataSequence 1 Number Reserved and must be set to zero.

21 bInterval 1 Number Polling interval to be used by this RPipe in
downstream communications

22 bOverTheAirInterval 1 Number If the transfer type is Isochronous or Interrupt, then
this is the interval at which the upstream wireless
endpoint is polled. See bOverTheAirInterval in
Table 7-29 for the encoding of this field.

This field is Reserved and must be set to zero for
Bulk and Control transfer types.

 Wireless Universal Serial Bus Specification, Revision 1.1

 253

Table 8-34. Device Wire Adapter RPipe Descriptor (cont.)

Offset Field Size Value Description

23 bmAttribute 1 Bitmap Bit Description

1:0 Value Transfer Type

00B Control

01B Isochronous

10B Bulk

11B Interrupt

5:2 If the RPipe type is Transparent, then
this field indicates the associated
upstream endpoint on the DWA. The
direction of this endpoint must match the
direction of the upstream endpoint as
defined in the field bEndpointAddress.

This field is reserved and must be set to
zero for all other RPipe types.

6 Zero-length packet insert support. For
Bulk OUT Transparent RPipes: When
this bit is set to 1, the DWA will include
either a short packet or a zero-length
packet corresponding to the data of the
packet on the upstream with “last” flag
set.

For other cases this bit is reserved.

7 If this bit is set to one then the endpoint
that is the target of this RPipe is
connected behind a hub that has multi-tt
support enabled. This field is only valid if
the bHSHubAddress field is not set to
zero and the bSpeed field is not set to
High-Speed.

Host software must not set this bit to one
if the bmAttributes.Multi-TT Supported
field is set to zero in the Wire Adapter
Class Descriptor.

24 bmCharacteristics 1 Bitmap Transfer types supported on this RPipe

Bit Description

0 1: Control Transfer supported

0: Control Transfer NOT supported

1 1: Isochronous Transfer supported

0: Isochronous Transfer NOT supported

2 1: Bulk Transfer supported

0: Bulk Transfer NOT supported

3 1: Interrupt Transfer supported

0: Interrupt Transfer NOT supported

4 1: RPipe is of type Transparent RPipe

0: RPipe is not of type Transparent
RPipe

 Wireless Universal Serial Bus Specification, Revision 1.1

 254

7:5 Reserved

This is a read only field.

25 bmRetryOptions 1 Bitmap Bit Description

2:0 The maximum number of times a
transaction must be retried before the
transfer request is failed.

The valid values are 0 through 3. A
value of zero in this field indicates that
the DWA must not count errors and
there is no limit on the retries.

For Isochronous transfers this field is
set to zero.

7:3 Reserved.

26 wNumTransactionErrors 2 Number The DWA increments this field when it encounters
an error while performing transactions to the
downstream endpoint targeted by this RPipe.

The host is responsible for resetting this field.

28 wVendorSpecificConfig 2 Number This field may be used for support of vendor-specific
features

30 bTResEPNumber 1 Number This field specifies over which endpoint Transfer
Results for this RPipe will be forwarded.

When zero value is used, the Transfer Results for
this RPipe shall be forwarded over the default Bulk
IN Transfer Results endpoint.

Any alternative value must specify one of the
Transfer Results enpoints supported by the DWA.

This field is valid only for non-transparent RPipes.
For Transparent RPipes this field is reserved, and
shall be set to zero.

All fields that are not marked read only may be changed by host software by using the Set RPipe Descriptor
request.

8.1.18.3 DWA Notification Information
Device Wire Adapters must send back notifications on for Remote Wake and Port Status Changes. The
notifications are sent over Transfer Results Endpoint, and may be concatenated with other Transfer Results and
Data, as described in 8.1.11. The format of each notification is detailed below.

8.1.18.3.1 Remote Wake
When the Device Wire Adapter detects a remote wake from any of its downstream connected devices and it is
armed for remote wake then it must send a Remote Wake notification to the host. The format of this notification
is shown in Table 8-35.

Table 8-35. Remote Wake Notification

Offset Field Size Value Description

0 bLength 1 2 Length of this block of data

1 bNotifyType 1 91H NOTIFY_TYPE_RWAKE

8.1.18.3.2 Port Status Change
A Device Wire adapter must send a Port Status Change notification when the status of a downstream port on the
Device Wire Adapter changes. The format of this notification is shown in Table 8-36.

 Wireless Universal Serial Bus Specification, Revision 1.1

 255

Table 8-36. Port Status Change Notification

Offset Field Size Value Description

0 bLength 1 3 Length of this block of data

1 bNotifyType 1 92H NOTIFY_TYPE_PORTSTATUS

2 bPortIndex 1 Number The Index of the Port on which a Port change
occurred.

8.1.18.4 DWA Transparent RPipe Transfers
When host software wants to get data or send data to a specific endpoint connected downstream of a DWA
using the Transparent RPipe Interface mechanism, it will map a wireless USB Transparent Data Transfer
Endpoint on the DWA Transparent RPipe interface to the wired USB endpoint. This mapping is accomplished
via the bmAttribute field in the RPipe descriptor. The mapping needs to make sure that the characteristics of the
downstream endpoint match those of the Transparent RPipe. Specifically:

 The RPipe needs to be of type Transparent (i.e. bmCharacteristics field in 8.1.18.2.18 shall indicate
this).

 If the downstream endpoint is of type Bulk / Interrupt / Isochronous, the Transparet RPipe
bmCharacteristics field should indicate that it supports Bulk / Interrupt / Isochronous transfers
respectively.

 Its direction, given by the direction of the endpoint to be used with this RPipe (bEndpointAddress field
of the descriptor) should match the direction of the downstream endpoint.

Furthermore, for endpoints of type Isochronous and Interrupt, the DWA uses the bInterval field in the RPipe
descriptor to determine the frequency with which to service the downstream wired endpoint. The host will
service the upstream wireless Isochronous or Interrupt endpoint on the DWA as specified in the
bOverTheAirInterval field in the RPipe descriptor. The DWA will accept Wireless USB isochronous data
packets on its isochronous endpoints. The DWA interacts with the downstream wired endpoints such that the
upstream wireless endpoints they are associated with behave like native Wireless USB endpoints of the same
type. Note that there is no transfer result or packet status for a Transparent RPipe transfer. Data that was read
from a downstream connected IN endpoint is sent back via its associated Wireless endpoint on the DWA.

8.1.18.4.1 DWA Isochronous OUT Responsibilities
The DWA parses packets received on one of its Wireless USB isochronous OUT endpoints using the Wireless
USB isochronous packet header format. The DWA sends the data to the downstream wired isochronous
endpoint at the specified (micro)frame based on the information in the packet header and the bInterval value
specified in the RPipe descriptor.

Figure 8-11 illustrates a High-speed Isochronous OUT data stream through a DWA. The illustration is
organized with time flowing from left to right and data flow from top to bottom, where the top illustrates a
packet payload of a Wireless USB transaction to a DWA isochronous endpoint, down through a DWA RPipe
buffer and finally over the USB 2.0 bus to the recipient endpoint.

Starting from the top, the host sends an isochronous packet to the isochronous function endpoint on the DWA
associated with the particular isochronous stream. The format of the packet is the standard isochronous data
format (see Table 5-1, Table 5-2and Table 5-3 for the definition details). In this example, it contains 32
isochronous data segments (Data – 1 through Data – 32), each of which translates to a micro-frame data
payload over the wire.

The DWA divides the associated RPipe buffer into interval segments, as illustrated in this example into 4ms
segments. All of the data received during an interval is placed into the RPipe buffer, organized into data groups
of eight isochronous segments. Each group is also annotated with the appropriate presentation time, which is the
USB 2.0 frame value during which the DWA must transmit the data group over the wire. It is the responsibility
of the host to ensure the isochronous data is sent over the Wireless USB channel in a timely fashion (i.e. before
the presentation times of the data become invalid).

 Wireless Universal Serial Bus Specification, Revision 1.1

 256

W-HDR 32 5216 100 Data - 1 98 Data - 2 100 Data - 3 100 Data - 32

WUSB Isoch Data Packet (n) WUSB Isoch Data Packet (n+1) WUSB Isoch Data Packet (n+2)
8 segments each

(1 USB 2.0 Frame)

Includes raw data for endpoint
plus segmentation info

641 642 643 645 646 647 649 650 651 653 654 655 656

652.1 652.2 652.3 652.4 652.5 652.6 652.7

Figure 8-11. High-speed Isochronous OUT Data Stream through a DWA

When the presentation time equals the downstream frame value, the DWA will transmit the isochronous data
segments over the wire. As illustrated, the first presentation time was 5216 (Wireless USB Channel time), so the
DWA transmits an isochronous OUT transaction during 652.0 (micro-frame 0) and sends Data -1. In the next
microframe (652.1) it transmits Data – 2, and so-on through Data – 8 in microframe 652.7. In the next frame,
the DWA begins transmitting the queued data from the next group. This streaming model continues until the
host ceases feeding the stream or errors cause the host to discard and skip late data. Those scenarios are
described in detail in Section 4.11.9.

8.1.18.4.2 DWA Isochronous IN Responsibilities
A DWA performs isochronous IN requests to the downstream wired endpoint every bInterval (as specified in
the RPipe descriptor) (micro)frames. The first downstream IN is performed when the first Wireless USB
Isochronous IN request for the associated upstream Wireless USB isochronous IN endpoint is received.

A DWA must aggregate wired isochronous packet data into the largest packets that can be sent over the air by
the associated Wireless USB Isochronous endpoint. It must not split data from a single (micro)frame across
multiple over-the-air packets.

Presentation times for over-the-air isochronous packets are determined by the (micro)frame for which the first
data segment in the Wireless USB isochronous packet was sampled on the wired downstream bus. The DWA
responds with the oldest data in its RPipe buffer for each Wireless USB Isochronous IN request. It only discards
data if the buffer associated with the RPipe for that endpoint overflows.

Figure 8-12 illustrates a Full-speed Isochronous IN data stream through a DWA. The top of the figure is a
timeline illustrating the SOFs transmitted downstream to the USB 2.0 device connected below the DWA. The
SOF values transmitted downstream of the DWA must match the Wireless USB channel times on the bus
between the DWA and its host.

The illustration is organized with time flowing from left to right and data flowing top to bottom. The DWA will
not begin generating IN Tokens to the downstream device until the host begins polling for data on the
associated DWA isochronous data stream function endpoint. The left-hand most WDTCTA represents the first
time the host begins polling the DWA isochronous function endpoint. The DWA does not have any data to
respond to this transaction token, so will respond with a NAK handshake. This directs the host to discontinue
polling the endpoint until the next service interval (designated by the vertical dotted lines).

In response to this first poll attempt by the host (which occurs before frame 642), the DWA begins transactions
to the downstream USB 2.0 function endpoint in the next frame (i.e. 643). In each frame after 642, the DWA

 Wireless Universal Serial Bus Specification, Revision 1.1

 257

conducts isochronous IN transactions to the USB 2.0 function endpoint. The DWA continually stores all of the
data received during the interval into the RPipe buffer and records the frame time of the first data received from
the USB 2.0 device during the interval (i.e. the interval N).

Figure 8-12. Full-speed Isochronous IN Data Stream through a DWA

In the next interval (N+1), the host polls the DWA’s isochronous function endpoint and the DWA returns the
data it has ready to transmit. At the time the WDTCTA during interval N+1 is transmitted by the host, the DWA
has not completely received any data from the USB 2.0 function endpoint during the interval, so the DWA only
transmits the complete data it does have (i.e. two isochronous data segments, beginning at 643). The format of
the resultant data packet is illustrated. Since 2 packets were received from the USB 2.0 function endpoint in
interval N, in response to the second WDTCTA poll, the DWA transmits a packet that includes the two samples
received and the presentation time (5144 – the Wireless USB Channel time corresponding to the DWA SOF
value of 643) of when data was first received. The host will attempt to pull data from the DWA’s endpoint until
the DWA function endpoint NAKs (not shown in interval N+1).

In the next interval (N+2), the host polls the DWA’s isochronous function endpoint and receives the next set of
isochronous segments ready (Data 3, 4 and 5), with the frame number where the first packet (i.e. Data-3 at 645)
was received from the USB 2.0 function endpoint. Each interval, the host will pull data from the endpoint until
either the DWA function endpoint NAKs or the host uses up all of the allowed number of transaction attempts
allowed for the service interval. This streaming model continues until the host ceases feeding the transaction
stream or errors cause the DWA to discard and skip late data. Those scenarios are described in detail in Section
4.11.9 of the Data Flow chapter.

Note, this is a rather simple example to illustrate the general flow. There is no intent to imply that a DWA
implements a 2-deep interval pipeline. Depending on wireless channel condition, it may be several intervals
behind the USB 2.0 channel.

8.2 HWA Operational Model

8.2.1 HWA Functional Characteristics
The basic functional block model for an HWA is illustrated in Figure 8-13. The common functional components
of a Wire Adapter (WA) include the device control and WA functions. Device control is accessed via the
Default Control Pipe using the USB 2.0 or Wireless USB standard device requests. These requests are defined
in Chapter 9 of the USB 2.0 specification and Section 7.3 of this specification. Host Wire Adapters provide an
interface for controlling the UWB radio (see Section 8.1.18.1).

 Wireless Universal Serial Bus Specification, Revision 1.1

 258

Figure 8-13. Host Wire Adapter Functional Model Block Diagram

The HWA function is operationally common to all HWA implementations. The HWA function is managed via
the WA Data Transfer Interface (see Section 8.1.2).

8.2.2 HWA Data Transfer Interface
This interface has a minimum of three function endpoints. These endpoints, plus the default Control endpoint
are used to accomplish all of the data and control communications between the USB host system and the Wire
Adapter. The endpoints and their purposes are enumerated below:

Control Endpoint This is the standard Default Control Pipe. It handles all non-transfer
requests including all of the required standard requests which are
defined in chapter 9 of the USB 2.0 specification and the WA class
specific requests defined in Section 8.1.16.

Notification Endpoint This Interrupt IN endpoint provides transfer status notifications to the
host. Transfer status is not returned on this endpoint. Instead, it
provides a notification that transfer status or data is available on the
Data Transfer Read Endpoint. Other asynchronous notifications are
also returned on this endpoint.

A Wire Adapter can send multiple notifications (up to the max packet
size of the interrupt endpoint) when it is polled. See Section
8.2.15.3for the types of notifications that may be sent to a host by a
Host Wire Adapter.

Data Transfer
Endpoint Pair

This set of paired (IN/OUT) endpoints is used to move data and data
transfer requests through the Wire Adapter to/from the client function
endpoint.

The bulk OUT endpoint is used to send transfer requests and transfer
data from the host to the Wire Adapter.

The bulk IN endpoint is used to return transfer status and transfer data
from the Wire Adapter to the host. See below for details.

 Wireless Universal Serial Bus Specification, Revision 1.1

 259

8.2.3 Remote Pipe
A Remote Pipe is a logical abstraction that provides a data flow through the Wire Adapter to a specific endpoint
on a specific device. Pipes are described in detail in Chapters 5 and 10 of the USB Specification 2.0.

A Wire Adapter provides a fixed number of Remote Pipes. The number of Remote Pipes supported is up to the
implementer. A simple Wire Adapter must provide at least 1 Remote Pipe to provide support for a single
attached device that only requires a control endpoint. The maximum number of Remote Pipes that a Wire
Adapter would need to support is 3937 (127 devices X 31 endpoints/device); however Wire Adapter
implementations are never expected to support 3937 physical Remote Pipes. Host software will multiplex
Remote Pipes between Asynchronous endpoints. Periodic endpoints that have active transfers will require
dedicated Remote Pipes. The minimum number of Remote Pipes in HWA is twice the number of devices that
the Wire Adapter supports at the same time.

The Default Control Pipe is used to initialize and manage individual Remote Pipes and the Data Transfer Pair is
used to move data through them. The general operational flow of a Remote Pipe is:

11. Host initializes a Remote Pipe resource on the Host Wire Adapter via requests on the Default Control Pipe
(see Section Error! Reference source not found.8.1.16).

12. To start a control, bulk, or interrupt transfer to a device connected downstream of a Wire Adapter, the host 12. To start a control, bulk, or interrupt transfer to a device connected downstream of a Wire Adapter, the host
sends a Transfer Request (Section 8.2.13.11) over the Data Transfer OUT endpoint to the Wire Adapter
function. The Transfer Request is addressed to a specific Remote Pipe resource on the Wire Adapter. If the
associated client function endpoint is an OUT, the OUT data will immediately follow the Transfer Request.
In general the Data Transfer OUT endpoint is used for the following purposes:

 Send Transfer Requests

 Send data destined for a device connected to one of the ports of the Wire Adapter

 Stop a Transfer Request by sending Abort Transfer Request

The Wire Adapter must check the length and transfer request type of the Transfer Request packet received
and ensure that they match. It also must check that the target Remote Pipe is configured to the same
transfer type.

If the Transfer Request received by the Wire Adapter is an OUT transaction, then the data destined for the
downstream device will be sent immediately after the request in the next packet. The amount of data that
follows the Transfer Request is described in the Transfer Request.

The Wire Adapter does not STALL the endpoint when the Transfer Request is incorrect. Rather, it
continues to accept the Transfer Request and any data that may follow the request. The Wire Adapter must
then send a Transfer Completion notification on the notification endpoint. The host will respond by polling
the associated Data Transfer IN endpoint to get the Transfer Result, which must state that the Wire Adapter
detected an error in the Transfer Request. The error values are defined in Table 8-51 (see Section
8.2.13.11.4).

13. When the transfer completes, the Wire Adapter sends a Transfer Complete Notification (Section
8.2.13.11.3) to the host on the notification endpoint.

14. The data and transfer results generated from a bulk, interrupt or control transfer request are transferred to
the host from the Wire Adapter through the Data Transfer IN endpoint. The data stream on this endpoint is
organized as a Transfer Result (Section 8.2.13.11.4) followed by an optional stream of transfer data from
the associated endpoint. The amount of data to be returned to the host is described in the Transfer Result.

If a transfer does not complete successfully, the Wire Adapter will only return a Transfer Result and will
not return any data back to the host.

If the host sends more Transfer Requests than a Remote Pipe in the Wire Adapter can concurrently handle (as
reported in its RPipe descriptor) the Wire Adapter will NAK the transaction until it has completed a pending
transfer on that Remote Pipe.

 Wireless Universal Serial Bus Specification, Revision 1.1

 260

Section 8.1.18.1.3 describes how isochronous transfers are handled on a HWA and Section 8.2.15.1 describes
how they are handled on a DWA.

8.2.4 Host Wire Adapter Functional Blocks
The Host Wire Adapter consists of four functional blocks as illustrated in Figure 8-14.

Upstream Endpoint
Controller

RPipe Controller

Downstream Host Controller

Upstream Port

Figure 8-14. General HWA Function Blocks

The HWA will forward all asynchronous notifications (connect/reconnect/disconnect/sleep etc) received from a
downstream device to Host software. Host software is responsible for handling the various downstream port
functions for an HWA. However, an HWA needs to store some information for each device connected
downstream of it, See Section 8.2.13.18. An HWA specifies the total number of devices that can be connected
to it in the bNumPorts field in its Wire Adapter descriptor.

8.2.5 Upstream Port
A host communicates with a Wire Adapter via its upstream port. The port is used for:

 Control of the Wire Adapter function

 Notification of changes to the host

 Communicating with the devices connected downstream of the Wire Adapter (via Remote Pipes)

A HWA may be a Bus Powered USB 2.0 device. The upstream port of the HWA must operate at Full-speed and
High-speed. If the HWA is operating at full speed then Isochronous transfers are not supported. The upstream
port of an HWA is the device side interface of a USB 2.0 device which is described in Section 11.6 of the USB
2.0 Specification.

8.2.6 Downstream Host Controller
A Wire Adapter has a host controller on which it creates, schedules, and manages the transaction protocol to
devices connected downstream. The downstream host controller receives the transfer information from Transfer
Requests and the associated RPipe Descriptor to schedule the newly added transfer to the system. At the same
time, it manages the schedule following the protocol of the downstream bus.

A Host Wire Adapter must be a Wireless USB Host Controller to devices ‘connected’ downstream.

8.2.7 Upstream Endpoint Controller
All Host Wire Adapters must have at least the following five endpoints:

 Default Control Endpoint

 Notification Endpoint

 Data Transfer Pair (Write (Bulk OUT) Endpoint and a matching Read (Bulk IN) Endpoint).

 Wireless Universal Serial Bus Specification, Revision 1.1

 261

 Radio Control Interrupt endpoint as part of the Radio Control Interface.

8.2.8 Remote Pipe Controller
This section describes how the Remote Pipes are used.

8.2.8.1 RPipe Descriptor
The RPipe descriptor holds all the information necessary to perform data transfers between a Host Wire Adapter
and an endpoint on a device connected downstream of it. It has to be configured before performing any
transaction with a downstream endpoint. Host software uses the SetRPipeDescriptor request to configure a
Remote Pipe. The descriptor may be overwritten to retarget the Remote Pipe at a different endpoint using
another SetRPipeDescriptor request. Host software is responsible to save the current state of the Remote Pipe
before retargeting a Remote Pipe to a different endpoint. Host software can get the current state of a Remote
Pipe by sending a GetRPipeDescriptor request to the Host Wire Adapter.

Host software can send a SetRPipeDescriptor request to a Remote Pipe only when that Remote Pipe is in the
Idle or UnConfigured state. Host software is required to correctly multiplex the available Remote Pipes over the
downstream endpoints that need to be serviced.

8.2.8.2 Bulk OUT Overview
For a Host to Device (OUT) data stream, the basic model is that the Host sends data to the Wire Adapter in the
context of a Remote Pipe and the Wire Adapter moves the data to the Wired or Wireless USB Endpoint,
utilizing the information present in the previously configured Remote Pipe.

The Host can determine from the RPipe Descriptor exactly how much buffering the Wire Adapter has allocated
or can allocate to this Remote Pipe. Figure 8-15 illustrates the generic data flow model for an OUT-bound Bulk
data stream. It shows the transfer request/data stream and the feedback/transfer status stream.

Figure 8-15. Host Wire Adapter Bulk OUT Operational Data Flow Model

In order to move the client buffer into the Wire Adapter, host software may have to divide the client buffer into
smaller chunks and forward them to the Wire Adapter. Host software is required to send data to the Wire
Adapter only in multiples of the Remote Pipe’s Maximum Packet Size field. The lone exception to this rule is
when the buffer remaining is not an even multiple of the Remote Pipe’s Maximum Packet Size field. In this
case the last data payload from the host to the Wire Adapter is the residual of the client data buffer. Host
software must not concatenate client data buffers in order to fill a data payload of the Remote Pipe’s Maximum
Packet Size field.

The size of each chunk depends on how much buffering has been allocated to the Remote Pipe. Each OUT pipe
transfer request is followed by the data for the Remote Pipe. The Wire Adapter is required to move the data

 Wireless Universal Serial Bus Specification, Revision 1.1

 262

portions sent by the host software to the Wired or Wireless USB Endpoint in the same order as the host sent
them.

It is important that the visibility of the original client buffer boundaries be preserved into the Host Wire
Adapter. Per-transfer attributes are used to inform the Host Wire Adapter how to manage the buffer portions.
For example, the attributes include information about whether this is a first, middle or end buffer portion. In
addition, the host software may be allowed to queue buffer portions of more than one buffer to the Host Wire
Adapter (at the same time). Therefore all transfer requests associated with the same client buffer must have a
unique identifier (i.e. tag). Host software is responsible for generating unique transfer request identifiers. The
Host Wire Adapter will send these identifiers back to the host software in a transfer result when it completes a
transfer request.

8.2.8.3 Bulk IN Overview
For a Device to Host (IN) data stream, once host software has client buffer space available, it sends a transfer
request to the Wire adapter to begin requesting data from a downstream connected Wired or Wireless USB
endpoint. It ensures that it does not ask for more data from the Wired or Wireless USB endpoint than the Wire
Adapter has buffering. Figure 8-16 illustrates the general data flow model of a Bulk IN data stream.

Figure 8-16. Host Wire Adapter IN Operational Data Flow Model

Host software may queue multiple transfer requests to the Wire Adapter. Each transfer request maps to a single
client input buffer. The size of the transfer request is allowed to be up to 2^32 - 1. If the client buffer is larger
than the Host Wire Adapter has buffering for, host software will split the buffer into multiple segments that the
Wire Adapter can accommodate and then manage the appropriate short packet semantics when short packets
occur in the data stream. Host software will tag each IN transfer request with a unique identifier. The maximum
number of IN requests per Remote Pipe the Host Wire Adapter may accommodate is determined by an attribute
provided in the RPipe descriptor.

The feedback data stream is multiplexed data and transfer status information. The Host Wire Adapter may
implement a shared IN data buffer across all IN Remote Pipes. It may optionally implement individual
buffering for each IN Remote Pipe. The granularity and frequency of data/transfer status communications to the
USB Host on the feedback stream is implementation dependent. However, feedback communications must
occur frequently enough to deliver data to the host without causing frequent data streaming stalls.

Whenever the Host Wire Adapter observes that the associated Wired or Wireless USB IN Endpoint provides a
short packet, the Wire Adapter will send the residual queued data to the host with a transfer status indicating the
transfer request is completed. It will then begin servicing the next transfer request queued for the Remote Pipe
at the next appropriate opportunity.

As feedback communications arrive at the Host, host software must parse the multiplexed data/status stream,
copying data into the client buffer and noting or responding to status feedback as appropriate.

 Wireless Universal Serial Bus Specification, Revision 1.1

 263

8.2.8.4 Control Transfer Overview
A USB control transfer has 2 (Setup and Status only) or 3 (Setup, Data and Status) stages depending on the
request. If the size of the data stage of the USB control transfer is less than or equal to the buffer available on
the Remote Pipe then the USB control transfer can be completely described in one transfer request and the Wire
Adapter is responsible for completing all stages of the USB control transfer.

If the USB control transfer has a data stage larger than the buffer available on the Remote Pipe, host software
will split the transfer into multiple segments. The first transfer request segment will have a valid set of bytes in
the Setup data and describe the amount of data that needs to be sent or received from the device. The
subsequent transfer request segments will not have any valid bytes in the Setup data field. A Host Wire Adapter
must only decode and send the Setup data included in the first transfer request segment of a multi-segment
transfer request. All segments of the transfer request must describe a buffer that is an exact multiple of the
Remote Pipe’s Maximum Packet Size field except for the final segment of the transfer request. This is required
so that the Host Wire Adapter can perform a status stage transaction either when a short packet occurs in one of
the transfer request segments or when the last transfer request segment has completed. Each transfer request
segment is tagged with a unique identifier, in order to allow host software to match returned status and possibly
IN data with the client request.

8.2.8.5 Interrupt Transfer Overview
Interrupt IN-bound and OUT-bound Remote Pipes have interface and data transfer semantics essentially
identical to the Bulk IN/OUT model described in Sections 8.2.8.2 and 8.2.8.3. The only difference is that each
Remote Pipe is typed as an Interrupt and includes an additional attribute that indicates the period at which the
endpoint should be provided service. The Host Wire Adapter has full freedom to determine the actual servicing
of the endpoint, as long as it is at least as frequent as the period requested by the bInterval field in the Remote
Pipe descriptor.

8.2.8.6 Isochronous Transfer Overview
An overview of Isochronous streaming support for an HWA is provided in Section 8.2.15.1.

8.2.9 HWA Suspend and Resume
Host Wire Adapters are bridges between Wired and Wireless USB buses. Wire Adapters must support suspend
and resume both as a device and in terms of propagating suspend/resume events between the busses it bridges.

A Host Wire Adapter’s upstream power state, like any USB 2.0 device, is managed by the Host. An HWA may
be active or suspended (HWA Upstream State) depending on whether it observes SOFs on its upstream port.
Further an HWA may be directed to start or stop the Wireless USB Channel (HWA Downstream State) and
either enabled or disabled for remote wakeup by the driver for the HWA. Table 8-37 provides the HWA
requirements as a Wireless USB Channel Host for legal combinations of HWA Upstream and Downstream
State.

An HWA is a bridge device in a USB hierarchy (i.e. it has a Wired USB 2.0 bus upstream and a Wireless USB
‘bus’ downstream). The suspend resume management model for an HWA is derived directly from the USB 2.0
model defined in Section 7.1.7.7 of reference [1]. A summary of this model is: an HWA must always attempt to
propagate resume signaling, regardless of whether it has been enabled for remote wake itself. It will turn other
events into remote wake signaling if and only if it has been enabled for remote wake. An HWA must always
serve as the Controlling Hub in response to resume signaling from a downstream device. Table 8-37
summarizes the HWA operational requirements to meet this model. The Event column lists the wake events and
the Effect column indicates the action an HWA must take when it detects the wake event for legal combinations
of HWA Upstream and Downstream State. The Requirement column describes HWA behavior while no
downstream wake events occur.

 Wireless Universal Serial Bus Specification, Revision 1.1

 264

Table 8-37. HWA Suspend Resume Requirements

HWA Upstream
State

HWA
Downstream

State

Requirement Event Effect

Active

Awake Normal Operation

Host Sleep

Before sleeping, send at least 3
MMCs with Channel Stop IE
with remote wakeup bit set to
0B

Any event Ignore

Host Sleep+

Wake up at least once every
TrustTimeout period
Send at least 3 MMCs with
Channel Stop IE with remote
wakeup bit set to 1B

Remote Wake
Notification or

DN_Connect or
DN_Disconnect

Start Channel
Send DN Receive
Notification

Suspended

Host Sleep

Before sleeping, send at least 3
MMCs with Channel Stop IE
with remote wakeup bit set to
0B

Any event Ignore

Host Sleep+

Wake up at least once every
TrustTimeout period
Send at least 3 MMCs with
Channel Stop IE with remote
wakeup bit set to 1B

Remote Wake
Notification or

DN_Connect or
DN_Disconnect

Resume Signaling on
upstream port
Start Channel
Send DN Receive
Notification

8.2.10 HWA Reset Behavior
A Host Wire Adapter can be reset through the upstream USB bus with standard signaling. After reset, HWA
clears all the status, state machines and registers and sets default values in the descriptors.

To reset just the host controller in a Host Wire Adapter, the host issues the class specific Set
Feature(WIRE_ADAPTER_RESET) request. On reception of this command, the Wire Adapter must terminate
any transfers intended for any downstream endpoints and all RPipes must transition to the unconfigured state.
The Wire Adapter must return power on default values for the RPipe descriptors if queried after the Reset
completes. Any data to be transferred on its upstream endpoints must be discarded and the data sequence as
well as buffer availability values on its upstream endpoints must return to their initial configured values.
Further, , all security keys and device information buffer contents set by host software must be discarded. After
the reset completes, the HWA must transition to the Disabled state.

8.2.11 Device Control
Host software can enable, disable and/or reset the host controller in a Wire Adapter device using the Set/Clear
Wire Adapter Feature requests. See Section 8.1.16.3 and Section 8.2.13.9 for details on these commands.

In addition, host software can query the Wire Adapter host controller status using the Get Wire Adapter Status
command described in Section 8.1.16.6.

8.2.12 Buffer Configuration
A Host Wire Adapter must have buffers to store the data received on its upstream port for OUT transfers and for
the data received from downstream devices for IN transfers. This buffer consists of one or more buffer blocks.
The size of each buffer block is described in the Host Wire Adapter Class Descriptor and the number of the
blocks for each RPipe is described in the RPipe’s Descriptor.

The size of each block is implementation dependent. The number of buffer blocks per RPipe may be fixed by
the Host Wire Adapter implementation; in this case the number is a read only field and cannot be changed in the
RPipe Descriptor. This is suitable for a Wire Adapter implementation designed exclusively to be used with a
particular class of devices.

 Wireless Universal Serial Bus Specification, Revision 1.1

 265

If the number of blocks per RPipe is dynamically manageable by host software then a value of “zero” must be
reported in the wBlocks field of an RPipe Descriptor after reset. In this case, Host software is responsible to
correctly assign the amount of buffer per RPipe. The total number of available buffer blocks is determined by
the wRPipeMaxBlock field in the Wire Adapter Descriptor. This implementation choice is suitable for an all-
purpose Host Wire Adapter.

8.2.13 HWA Requests
All Host Wire Adapter devices must implement all required standard commands in the core device framework.
All Host Wire Adapters must support the Class specific requests defined in this Section..

The valid values for the bmRequestType.Recipient field are extended in this class specification to allow
addressing of Ports and RPipes as illustrated in Table 8-38.

Table 8-38. Recipient Encoding Extension

Value Recipient

0 Device

1 Interface

2 Endpoint

3 Other

4 Port

5 RPipe

6-31 Reserved

Table 8-39. Host Wire Adapter Class-Specific Requests

Request bmRequestType bRequest wValue wIndex wLength Data

Abort RPipe 00100101B ABORT_RPIPE Zero RPipe Index Zero None

Clear RPipe Feature 00100101B CLEAR_FEATURE Feature
Selector

RPipe Index Zero None

Clear Wire Adapter
Feature

00100001B CLEAR_FEATURE Feature
Selector

Interface
Number

Zero None

Get RPipe Descriptor 10100101B GET_DESCRIPTOR Descriptor
Type

RPipe Index Descriptor
Length

RPipe
Descriptor

Get RPipe Status 10100101B GET_STATUS Zero RPipe Index 1 RPipe
Status

Get Wire Adapter
Status

10100001B GET_STATUS Zero Interface
Number

4 Wire
Adapter
Status

Set RPipe Descriptor 00100101B SET_DESCRIPTOR Descriptor
Type

RPipe Index Descriptor
Length

RPipe
Descriptor

Set RPipe Feature 00100101B SET_FEATURE Feature
Selector

RPipe Index Zero None

Set Wire Adapter
Feature

00100001B SET_FEATURE Feature
Selector

Interface
Number

Zero None

Reset RPipe 00100101B RESET_RPIPE Zero RPipe Index Zero None

Add MMC IE 00100001B ADD_MMC_IE Interval and
Repeat
Count

IE Handle and
Interface
Number

IE Length IE Block

Get BPST Adjustment 10100001B GET_TIME TIME_ADJ Interface 1 Adjustment

 Wireless Universal Serial Bus Specification, Revision 1.1

 266

Request bmRequestType bRequest wValue wIndex wLength Data

Number Value

Get BPST Time 10100001B GET_TIME TIME_BPS
T

Interface
Number

3 WUSB
Channel

Time

Get WUSB Time 10100001B GET_TIME TIME_WUS
B

Interface
Number

3 WUSB
Channel

Time

Remove MMC IE 00100001B REMOVE_MMC_IE Zero IE Handle and
Interface
Number

Zero None

Set Device
Encryption

00100001B SET_ENCRYPTION Encryption
Value

Device Index
and Interface

Number

Zero None

Set Device Info 00100001B SET_DEVICE_INFO Zero Device Index
and Interface

Number

36 Device
Information

Buffer

Set Device Key 00100001B SET_DESCRIPTOR Descriptor
Type and
Key Index

Device Index
and Interface

Number

Key
Descriptor

Length

Key
Descriptor

Set Group Key 00100001B SET_DESCRIPTOR Descriptor
Type and
Key Index

Interface
Number

Key
Descriptor

Length

Key
Descriptor

Set Num DNTS Slots 00100001B SET_NUM_DNTS Interval

And
Number of

DNTS Slots

Interface
Number

Zero None

Set WUSB Cluster ID 00100001B SET_CLUSTER_ID Cluster ID Interface
Number

Zero None

Set WUSB MAS 00100001B SET_WUSB_MAS Zero Interface
Number

32 WUSB
MAS

Set WUSB Stream
Index

00100001B SET_STREAM_IDX Stream
Index

Interface
Number

Zero None

WUSB Channel Stop 00100001B WUSB_CH_STOP WUSB
Channel

Time Offset

Interface
Number

Zero None

Table 8-40. Host Wire Adapter Class Request Codes

bRequest Value

GET_STATUS 0

CLEAR_FEATURE 1

Reserved 2

SET_FEATURE 3

Reserved 4-5

GET_DESCRIPTOR 6

SET_DESCRIPTOR 7

Reserved 8-13

ABORT_RPIPE 14

 Wireless Universal Serial Bus Specification, Revision 1.1

 267

RESET_RPIPE 15

ADD_MMC_IE 20

REMOVE_MMC_IE 21

SET_NUM_DNTS 22

SET_CLUSTER_ID 23

SET_DEVICE_INFO 24

GET_TIME 25

SET_STREAM_IDX 26

SET_WUSB_MAS 27

WUSB_CH_STOP 28

Table 8-41. WUSB Channel Time Type

Channel Time Types Value

TIME_ADJ 0

TIME_BPST 1

TIME_WUSB 2

Table 8-42. Host Wire Adapter Class Feature Selector

Feature Selector Recipient Value

WIRE_ADAPTER _ENABLE Wire Adapter Device 1

WIRE_ADAPTER _RESET Wire Adapter Device 2

RPIPE_PAUSE RPipe 1

RPIPE_STALL RPipe 2

8.2.13.1 Abort RPipe
This request aborts all transfers pending on the given RPipe.

bmRequestType bRequest wValue wIndex wLength Data

00100101B ABORT_RPIPE Zero RPipe Index Zero None

Upon receipt of this request, the Wire Adapter will terminate all pending transfers for the given RPipe and place
the RPipe in the Idle state. The Wire Adapter must return a transfer completion notification, transfer result and
any data that was received and acknowledged from the targeted endpoint for all terminated transfers.

It is a Request Error if wValue or wLength are other than as specified above or if wIndex specifies an RPipe that
does not exist.

If the Wire Adapter is not configured, the Wire Adapter’s response to this request is undefined.

8.2.13.2 Clear RPipe Feature
This request resets a value in the reported RPipe status.

bmRequestType bRequest wValue wIndex wLength Data

00100101B CLEAR_FEATURE Feature Selector RPipe Index Zero None

 Wireless Universal Serial Bus Specification, Revision 1.1

 268

The wIndex field contains an RPipe Index. The RPipe index must be a valid RPipe index for that Wire Adapter.

The Wire Adapter must transition the state of the RPipe from its current state to the new state (see Figure 8-17.
RPipe State Diagram) depending on the Feature being cleared; see Table 8-42 for the feature selector definitions
that apply to an RPipe as a recipient. Features that can be cleared with this request are:

 RPIPE_PAUSE

 RPIPE_STALL

It is a Request Error if wValue is not a feature selector listed in Table 8-42, if wIndex specifies an RPipe that
does not exist, or if wLength is not as specified above.

If the Wire Adapter is not configured, the Wire Adapter’s response to this request is undefined.

8.2.13.3 Clear Wire Adapter Feature
This request is used to clear or disable a specific feature.

bmRequestType bRequest wValue wIndex wLength Data

00100001B CLEAR_FEATURE Feature
Selector

Interface
Number

Zero None

The lower byte of wIndex contains the target interface number. Clearing a feature disables that feature; see
Table 8-42 for the feature selector definitions that apply to the controller as a recipient. Features that can be
cleared with this request are:

 WIRE_ADAPTER_ENABLE

It is a Request Error if wValue is not a feature selector listed in Table 8-42 or wLength is not as specified above.

If the interface specified does not exist, then the device responds with a Request Error.

If the Wire Adapter is not configured, the Wire Adapter’s response to this request is undefined.

8.2.13.4 Get RPipe Descriptor
This request returns the current Wire Adapter RPipe Descriptor.

bmRequestType bRequest wValue wIndex wLength Data

10100101B GET_DESCRIPTOR Descriptor Type RPipe Index Descriptor
Length

RPipe
Descriptor

The GetDescriptor() request for the RPipe descriptor follows the same usage model as that of the standard
GetDescriptor() request. The lower byte of wValue must be set to zero and the RPipe Index is given in the lower
twelve bits of the wIndex field.

If wLength is larger than the actual length of the descriptor, then only the actual length is returned. If wLength is
less than the actual length of the descriptor, then only the first wLength bytes of the descriptor are returned; this
is not considered an error even if wLength is zero.

It is a Request Error if wValue or wIndex are other than as specified above.

If the Wire Adapter is not configured, the Wire Adapter’s response to this request is undefined.

8.2.13.5 Get RPipe Status
This request returns the current status for the given RPipe.

bmRequestType bRequest wValue wIndex wLength Data

10100101B GET_STATUS Zero RPipe Index 1 RPipe Status

 Wireless Universal Serial Bus Specification, Revision 1.1

 269

The wIndex field contains an RPipe Index. The RPipe index must be a valid RPipe index for that Wire Adapter.
The returned value describes the current status of the specified RPipe. The meanings of the individual bits are
given in Table 8-43.

Table 8-43. RPipe State Report

Offset Field Size Value Description

0 RPipeState 1 Bitmap State of this RPipe:

Bit Description

0 1 = Idle, 0 = Active

1 1 = Paused, 0 = Not Paused

2 1 = Configured

0 = UnConfigured

3 1 = Stalled, 0 = Not Stalled

7:4 Reserved

Once an RPipe is configured then that RPipe can only be in of three states: Paused, Stalled or Not Paused

A Wire Adapter must not perform any transactions to the endpoint that an RPipe is targeted at if that RPipe is in
the Paused state. The RPipe must be transitioned out of the Paused state and into one of the two substates of
the Not Paused state when the Wire Adapter receives a Clear Feature: RPIPE_PAUSE command.

However if an RPipe in an HWA was transitioned to the Paused state due to the reception of a flow control
response from the endpoint targeted by that RPipe, then that RPipe must be transitioned back to one of the two
substates of the Not Paused state when the HWA receives an DN_EPRdy from that endpoint.

Similarly, a Wire Adapter must not perform any transactions to the endpoint that an RPipe is targeted at if that
RPipe is in the Stalled state. The RPipe must be transitioned to this state when a transfer completes with an
error condition (e.g. STALL response from the targeted endpoint or maximum number or retries is exceeded for
a transaction etc).

It is the responsibility of the WA driver to abort any pending transfer requests if necessary, perform any
operation to clear the error condition on the targeted endpoint and finally transition that RPipe back to the Idle
state by sending the Wire Adapter a Clear Feature: RPIPE_STALL command.

The RPipe state diagram is given below.

 Wireless Universal Serial Bus Specification, Revision 1.1

 270

Figure 8-17. RPipe State Diagram

It is a Request Error if wValue or wLength are other than as specified above or if wIndex specifies an RPipe that
does not exist.

If the Wire Adapter is not configured, the Wire Adapter’s response to this request is undefined.

8.2.13.6 Get Wire Adapter Status
This request returns the current status of the Wire Adapter.

bmRequestType bRequest wValue wIndex wLength Data

10100001B GET_STATUS Zero Interface
Number

4 Wire
Adapter
Status

The lower byte of wIndex contains the target interface number. The returned value gives the current Wire
Adapter status. The meanings of the individual bits are given in Table 8-44.

Table 8-44. Wire Adapter Status Bits

Bit Description

0 Controller Enabled/Disabled: This field indicates whether the controller is enabled or disabled.

Value Description

0 Controller is disabled

1 Controller is enabled

1 Reset: This bit is set while a Reset is in progress. It is cleared by the Wire Adapter once Reset is completed

31:2 Reserved: These bits return 0 when read.

 Wireless Universal Serial Bus Specification, Revision 1.1

 271

Figure 8-18. Wire Adapter Host Controller State Diagram

Table 8-45. Wire Adapter Enabled Behavior

WA Type Behavior

DWA Parses Schedule

Sends SOFs

HWA Parses Schedule

Sends MMCs

It is a Request Error if wValue or wLength are other than as specified above.

If the interface specified does not exist, then the device responds with a Request Error.

If the Wire Adapter is not configured, the Wire Adapter’s response to this request is undefined.

8.2.13.7 Set RPipe Descriptor
This request sets the related attributes of specified RPipe.

bmRequestType bRequest wValue wIndex wLength Data

00100101B SET_DESCRIPTOR Descriptor Type RPipe Index Descriptor
Length

RPipe Descriptor

The host supplies the new RPipe settings in the RPipe descriptor it sends in the data phase. The lower byte of
wValue must be set to zero and the RPipe Index is given in the lower twelve bits of the wIndex field.

It is a Request Error if the RPipe is not in the Idle or UnConfigured state when this command is received.

It is a Request Error if wLength is not equal to the RPipe Descriptor length.

It is a Request Error if wValue or wIndex are other than as specified above.

If the Wire Adapter is not configured, the Wire Adapter’s response to this request is undefined.

 Wireless Universal Serial Bus Specification, Revision 1.1

 272

8.2.13.8 Set RPipe Feature
This request sets the specified RPipe to the specified RPipe state.

bmRequestType bRequest wValue wIndex wLength Data

00100101B SET_FEATURE Feature Selector RPipe Index Zero None

The wIndex field contains an RPipe Index. The RPipe index must be a valid RPipe index for that Wire Adapter.

Setting a feature enables that feature; see Table 8-42 for the feature selector definitions that apply to an RPipe
as a recipient. Features that can be set with this request are:

 RPIPE_PAUSE

It is a Request Error if wValue is not a feature selector listed in Table 8-42, if wIndex specifies an RPipe that
does not exist, or if wLength is not as specified above.

If the Wire Adapter is not configured, the Wire Adapter’s response to this request is undefined.

8.2.13.9 Set Wire Adapter Feature
This request is used to set or enable a specific feature.

bmRequestType bRequest wValue wIndex wLength Data

00100001B SET_FEATURE Feature
Selector

Interface
Number

Zero None

The lower byte of wIndex contains the target interface number. Setting a feature enables that feature or starts a
process associated with that feature; see Table 8-42 for the feature selector definitions that apply to the Wire
Adapter as a recipient. Features that can be set with this request are:

 WIRE_ADAPTER_ENABLE

 WIRE_ADAPTER_RESET

It is a Request Error if wValue is not a feature selector listed in Table 8-42 or wLength is not as specified above.

If the interface specified does not exist, then the device responds with a Request Error.

If the Wire Adapter is not configured, the Wire Adapter’s response to this request is undefined.

8.2.13.10 Reset RPipe
This request resets the specified RPipe to a known state.

bmRequestType bRequest wValue wIndex wLength Data

00100101B RESET_RPIPE Zero RPipe Index Zero None

This request resets an RPipe in the Idle state. After reset, the RPipe will transition to the UnConfigured state
and transfer sequencing mechanism for the RPipe will be reset to its start state.

The host must either wait for pending transfers to drain or abort the pending transfers on this RPipe with the
ABORT_RPIPE request (see Section 8.2.13.1) before sending this request.

It is a Request Error if wValue or wLength are other than as specified above or if wIndex specifies an RPipe that
does not exist.

If the RPipe is not in an Idle state, the Wire Adapter’s response to this request is undefined.

If the Wire Adapter is not configured, the Wire Adapter’s response to this request is undefined.

 Wireless Universal Serial Bus Specification, Revision 1.1

 273

8.2.13.11 Transfer Requests
To initiate a transfer, the host must first configure an RPipe to the target endpoint on the target device. The
index of the configured RPipe is then used in the transfer requests.

After configuring the RPipe, the host submits a transfer request and an arbitrary amount of data to the Wire
Adapter via the Data Transfer Write endpoint. The amount of data accompanying the transfer request is
controlled by the total amount of data in the transfer and the amount of buffering available to the RPipe. The
amount of buffer available on the RPipe is indicated in the RPipe descriptor. RPipes must support at least two
concurrent requests per Interrupt RPipe in order to support Interrupt transfers. In addition an HWA must
support at least four concurrent requests per Isochronous RPipe to support Isochronous transfers.

8.2.13.11.1 Control Transfers
Control Transfers are performed using a Control Transfer Request as shown in Table 8-46. The format of this
request includes the setup data for the control transfer to be performed to the downstream connected device.
Table 8-47 describes the operational requirements of the Wire Adapter when it receives a Control Transfer
Request segment.

It is the responsibility of the host to insure that the amount of data to be transferred for all Control Transfer
Request segments except for the last Control Transfer Request segment is a multiple of the wMaxPacketSize
field in the RPipe descriptor so as to maintain USB short packet semantics. The Wire Adapter must send back
intermediate transfer completion notifications (See Section 0) and transfer results (See Section 8.2.13.11.4)
when it completes each Control Transfer Request segment. It is the responsibility of the Wire Adapter to
perform a status stage transaction when the last Control Transfer Request segment of the data stage is
completed or if it receives a short packet from the device in any Control Transfer Request segment of the data
stage.

The data for each segment of a non zero length Control Write Transfer is sent immediately after each Control
Transfer Request segment in the next packet.

Table 8-46. Control Transfer Request

Offset Field Size Value Description

0 bLength 1 18H Length of this request

1 bRequestType 1 80H REQUEST_TYPE_CONTROL – indicates a control
transfer

2 wRPipe 2 Number RPipe this transfer is targeted to

4 dwTransferID 4 Number Host-assigned ID for this transfer. All pending
dwTransferID are unique.

8 dwTransferLength 4 Number Amount of data following for an OUT transfer or the
maximum amount of returned data for an IN transfer

12 bTransferSegment 1 Bitmap Bit Description

6:0 Segment Number

7 Last Segment

 Wireless Universal Serial Bus Specification, Revision 1.1

 274

Offset Field Size Value Description

13 bmAttribute 1 Bitmap Bit Description

0 Control Transfer direction

Value Meaning

0 Control transfer write

1 Control transfer read

1 Unsecured Control Transfer.

Value Meaning

0 Regular Control transfer

1 Unsecured Control
transfer

This field is only valid for HWAs.

7:2 Reserved, must be zero

14 wReserved 2 Zero Reserved, must be zero.

16 baSetupData 8 Byte
array

8-byte setup packet data

Table 8-47. WA Control Transfer Request Operational Requirements

bRequestType Segment
Number

Last
Segment Operational Requirement

REQUEST_TYPE_CONTROL 0 1 Send contents of baSetupData

The transfer request describes the complete USB
control transfer

The WA must perform a status stage transaction after
the data stage if any

REQUEST_TYPE_CONTROL 0 0 Send contents of baSetupData

The transfer request describes a USB control transfer
with the first segment of the data transfer stage

The WA must perform a status stage transaction if it
receives a short packet from the device during this
transfer segment

REQUEST_TYPE_CONTROL >0 0 The transfer request describes a subsequent segment
of the data transfer stage of a USB control transfer

The WA must perform a status stage transaction if it
receives a short packet from the device during this
transfer segment

REQUEST_TYPE_CONTROL >0 1 The transfer request describes the last segment of the
data transfer stage of a USB control transfer

The WA must perform a status stage transaction if it
receives a short packet from the device during this
transfer segment or at the end of this transfer segment

8.2.13.11.2 Bulk and Interrupt Transfers
Bulk and Interrupt transfers use the Bulk or Interrupt Transfer Request as shown in Table 8-48. This request
type allows large transfers to be segmented into multiple smaller transfers to avoid RPipe buffer overflow on
the Wire Adapter. When transfers are segmented, the host must insure that the amount of data for all segments
except for the last segment is a multiple of the wMaxPacketSize field in the RPipe descriptor. This is necessary
to maintain USB short-packet semantics.

 Wireless Universal Serial Bus Specification, Revision 1.1

 275

For OUT transfers, the request and the data are sent as consecutive transactions. This allows the Wire Adapter
to receive and interpret the request first and prepare to receive the data.

Table 8-48. Bulk or Interrupt Transfer Request

Offset Field Size Value Description

0 bLength 1 10H Length of this request

1 bRequestType 1 81H REQUEST_TYPE_BULK_OR_INTERRUPT –
indicates a bulk/interrupt transfer

2 wRPipe 2 Number RPipe this transfer is targeted to

4 dwTransferID 4 Number Host-assigned ID for this transfer

8 dwTransferLength 4 Number Amount of data following for an OUT transfer or the
maximum amount of returned data for an IN transfer

12 bTransferSegment 1 Bitmap Bit Description

6:0 Segment Number

7 Last segment

13 bReserved 1 Zero Reserved for future use, must be zero.

14 wReserved 2 Zero Reserved for future use, must be zero.

8.2.13.11.3 Transfer Completion Notification
When the Wire Adapter completes a transfer or a portion of a segmented transfer, it will return a Transfer
completion notification on the Notification endpoint. The Transfer Notification format is shown in Table 8-49.
The data transfer endpoint on which the transfer result and data if any is available is given in the bEndpoint
field. The type of the notification is indicated in the bNotifyType field.

Table 8-49. Transfer Notification

Offset Field Size Value Description

0 bLength 1 4 Length of this block of data

1 bNotifyType 1 93H NOTIFY_TYPE_TRANSFER

2 bEndpoint 1 Number Endpoint on which the transfer result is available

3 bReserved 1 Number Reserved

8.2.13.11.4 Transfer Result
Host software can get the Transfer Result from the Data Transfer Read endpoint number indicated in the
previous transfer completion notification. If the corresponding transfer was an IN transfer (Bulk/Interrupt IN or
Control Transfer Read), the transfer result and the IN data will be returned as separate and consecutive
transfers. This allows the host to receive the result packet, interpret the results and identify the correct host
buffer in which to receive the IN data. The Transfer Result format is illustrated in Table 8-50.

Table 8-50. Transfer Result

Offset Field Size Value Description

0 bLength 1 10H Length of this block of data (not counting transfer
data)

1 bResultType 1 83H RESULT_TYPE_TRANSFER – indicates result type

2 dwTransferID 4 Number Host-assigned ID for this transfer

6 dwTransferLength 4 Number Amount of data transferred for either OUT or IN

10 bTransferSegment 1 Bitmap Bit Description

 Wireless Universal Serial Bus Specification, Revision 1.1

 276

Offset Field Size Value Description

6:0 Segment Number

7 Last segment

11 bTransferStatus 1 Number The transfer status

12 dwNumOfPackets 4 Number Number of Packet lengths and status following. This
will be zero for non Isochronous transfers.
This field is reserved and must be set to zero for
DWAs.

The Transfer (or Packet) Status field in the Transfer Result (or Packet Status) returned to host software is used
to decode whether a transfer completed successfully or the type of error that occurred while performing the
transfer described by a previously received transfer request. The set of legal Transfer/Packet Status values is
defined in Table 8-51.

Table 8-51. Transfer/Packet Status

Bit Description

5:0

Status Value Description

0 TRANSFER_STATUS_SUCCESS

The transfer completed successfully. Bit 6 and 7 are set to zero.

1 TRANSFER_STATUS_HALTED

This means that the endpoint that this transfer was attempted on is currently halted.

2 TRANSFER_STATUS_DATA_BUFFER_ERROR

There was a data buffer under/over run.

3 TRANSFER_STATUS_BABBLE

A babble was detected on the transfer. This could be either Frame babble or Packet
babble or both.

4 Reserved

5 TRANSFER_STATUS_NOT_FOUND

Returned as a response to an Abort Transfer request that has an invalid or already
completed TransferID.

6 TRANSFER_STATUS_INSUFFICIENT_RESOURCE

Returned in the transfer result when the Wire Adapter could not get enough
resources to complete a previously accepted transfer request.

5:0 7 TRANSFER_STATUS_TRANSACTION_ERROR

Returned in the transfer result when the Wire Adapter encountered a transaction
error while performing this transfer.

Bits Description

7:6 Indicates whether this was an error or a warning.

Value Meaning

00B Undefined

01B The transfer completed successfully but transaction errors
occurred which were successfully retried.

10B The transaction failed after the number of retry attempts
specified in bmRetryOptions field of the RPipe descriptor.

11B Undefined

 Wireless Universal Serial Bus Specification, Revision 1.1

 277

Bit Description

Timeout, Bad PID, CRC error are examples of DWA transaction errors.

Timeout, Bad PID, FCS error, Bad sequence number are examples of HWA
transaction errors.

8 TRANSFER_STATUS_ABORTED

The transfer was aborted by an Abort Transfer Request or by an AbortRPipe
command.

9 TRANSFER_STATUS_RPIPE_NOT_READY

The transfer request was sent to an unconfigured RPipe.

10 INVALID_REQUEST_FORMAT

This status may be sent back for one of two reasons:

 The transfer request length was not equal to the length field for the specified
request type

 The request type was unknown.

11 UNEXPECTED_SEGMENT_NUMBER

The transfer request segment numbers were not received in incrementing order
starting with zero.

12 TRANSFER_STATUS_RPIPE_TYPE_MISMATCH

The transfer type in the transfer request did not match the transfer type that the
RPipe was previously configured to.

13 TRANSFER_STATUS_PACKED_DISCARDED

This indicates that the HWA was unable to transmit an Isochronous packet by its
presentation time.

This error code must only be set in the Packet Status for the packet that was
discarded. If all the packets in the transfer request were discarded then the transfer
status must be set to this value as well.

Note that this error code must only be used in the result field if this was the result of
an Isochronous OUT Transfer request.

14-63 Reserved

 Note unless mentioned otherwise, bit 7 is set for all status values.

6 Warning This bit is set when the status is warning.

7 Error This bit is set when the status is error

8.2.13.11.5 Abort Transfer
The Abort Transfer request shown in Table 8-52 allows the host to abort a specific transfer. When the Wire
Adapter receives this request, it will abort the specified transfer, send a Transfer completion notification,
Transfer Result and any data that it received and acknowledged from the targeted endpoint back to the host. The
Transfer Result must indicate that the transfer was aborted and the number of bytes that were sent or received
before the request was aborted. The Abort Transfer request itself is acknowledged by the Wire Adapter when it
ACKs the request.

Table 8-52. Abort Transfer Request

Offset Field Size Value Description

0 bLength 1 08H Length of this request

1 bRequestType 1 84H REQUEST_TYPE_ABORT – abort the specified
transfer

2 wRPipe 2 Number RPipe on which the transfer must be aborted

4 dwTransferID 4 Number Host-assigned ID for the transfer request to be
aborted

 Wireless Universal Serial Bus Specification, Revision 1.1

 278

8.2.13.12 Add MMC IE
This request is used to add/modify Information Elements to be sent by the HWA in subsequent MMCs.

bmRequestType bRequest wValue wIndex wLength Data

00100001B ADD_MMC_IE Interval and
Repeat Count

IE Handle

and Interface
Number

IE Length IE Block

Upon receipt of this request, the HWA will store the Information Element (IE) block of data internally. An IE
block may contain one or more IEs. The upper byte of the wValue field (Interval) specifies the rate at which the
HWA must include this IE block in an MMC. This field is expressed in milliseconds. The lower byte of wValue
(Repeat Count) specifies the number of consecutive MMCs that this IE block must be sent in during each
interval. The HWA operational requirements when it gets this request are given in Table 8-53.

Table 8-53. HWA Add MMC IE Request Operational Requirements

Interval Repeat Count Operational Requirement

0 Number The HWA must send this IE block in every MMC. The value in the
Repeat Count field must be ignored.

1-254 Number The HWA must send this IE block every Interval period. The Repeat
Count field specifies the number of consecutive MMCs that this IE
block must be sent in per Interval.

255 Number This value must be treated as an infinite period. The HWA must only
send this IE block the number of times specified in the Repeat Count
field.

The upper byte of wIndex field uniquely identifies an IE block. This is the handle to be used by the host
software when it needs to modify or remove this IE block from subsequent MMCs. The total number of IE
blocks supported by the HWA is specified by bNumMMCIEs specified in the HWA’s Wire Adapter descriptor.

The HWA must add the IE blocks that are to be sent in the MMC (based on the Repeat Count and Interval
values specified when the IE block was added) after all the WxCTA IEs in ascending IE Handle order.

The lower byte of wIndex specifies the target interface number.

It is a Request Error if wIndex specifies an IE Handle that is greater than (bNumMMCIEs - 1).

If the interface specified does not exist, then the device responds with a Request Error.

If the HWA is not configured, the HWA’s response to this request is undefined.

8.2.13.13 Get BPST Adjustment
This request returns the current adjustment value of the BPST.

bmRequestType bRequest wValue wIndex wLength Data

10100001B GET_TIME TIME_ADJ Interface
Number

1 Adjustment
Value

The lower byte of wIndex specifies the target interface number. The returned value gives the adjustment value
in microseconds.

It is a Request Error if wValue or wLength are other than as specified above.

If the interface specified does not exist, then the device responds with a Request Error.

 Wireless Universal Serial Bus Specification, Revision 1.1

 279

If the Host Wire Adapter is not configured, the Host Wire Adapter’s response to this request is undefined.

8.2.13.14 Get BPST Time
This request returns the WUSB channel time at the BPST of the next superframe.

bmRequestType bRequest wValue wIndex wLength Data

10100001B GET_TIME TIME_BPST Interface
Number

3 WUSB
Channel

Time

The lower byte of wIndex specifies the target interface number. The returned value gives the 24-bit WUSB
channel time value at the Beacon Period Start Time (BPST) of the next superframe.

It is a Request Error if wValue or wLength are other than as specified above.

If the interface specified does not exist, then the device responds with a Request Error.

If the Host Wire Adapter is not configured, the Host Wire Adapter’s response to this request is undefined.

8.2.13.15 Get WUSB Time
This request returns the current WUSB channel time.

bmRequestType bRequest wValue wIndex wLength Data

10100001B GET_TIME TIME_WUSB Interface
Number

3 WUSB
Channel

Time

The lower byte of wIndex specifies the target interface number. The returned value gives the current 24-bit
WUSB channel time value.

It is a Request Error if wValue or wLength are other than as specified above.

If the interface specified does not exist, then the device responds with a Request Error.

If the Host Wire Adapter is not configured, the Host Wire Adapter’s response to this request is undefined.

8.2.13.16 Remove MMC IE
This request is used to remove an Information Element from subsequent MMCs.

bmRequestType bRequest wValue wIndex wLength Data

00100001B REMOVE_MMC_IE Zero IE Handle and
Interface
Number

Zero None

Upon receipt of this request, the HWA will erase the Information Element block of data that is uniquely
identified by the IE Handle. The HWA must stop sending this Information Element block in subsequent MMCs.
If the IE Handle does not exist, then the HWA is still required to complete the request successfully; however it
must not remove any Information Element blocks that were added by any previous Add MMC IE commands.

The upper byte of the wIndex field (IE Handle) uniquely identifies an Information Element block. The total
number of IE blocks supported by the HWA is specified by bNumMMCIEs specified in the Wire Adapter
descriptor.

The lower byte of wIndex specifies the target interface number.

It is a Request Error if wValue or wLength are other than as specified above or if the upper byte of wIndex
species an IE Handle that is larger than bNumMMCIEs.

If the interface specified does not exist, then the device responds with a Request Error.

 Wireless Universal Serial Bus Specification, Revision 1.1

 280

If the Host Wire Adapter is not configured, the Host Wire Adapter’s response to this request is undefined.

8.2.13.17 Set Device Encryption
This request sets the encryption type to be used when sending/receiving data to/from the device connected
downstream of the HWA.

bmRequestType bRequest wValue wIndex wLength Data

00100001B SET_ENCRYPTION Encryption
Value

Device Index
and Interface

Number

Zero None

Encryption Value comes from one of the Encryption Type descriptors contained in the Security Descriptor
returned in the configuration descriptor. The upper byte of wIndex (Device Index) specifies the Device Index

The lower byte of wIndex specifies the target interface number.

It is a Request Error if Encryption Value does not represent a valid encryption type.

It is a Request Error to attempt to set WIRED as the current encryption type.

It is a Request Error if wLength is other than as specified above or if the Device Index greater than or equal to
the bNumPorts field in the Wire Adapter descriptor.

If the interface specified does not exist, then the device responds with a Request Error.

If the Host Wire Adapter is not configured, the Host Wire Adapter’s response to this request is undefined.

8.2.13.18 Set Device Info
This request sets the device information buffer that is associated with the device connected downstream of the
HWA.

bmRequestType bRequest wValue wIndex wLength Data

00100001B SET_DEVICE_INFO Zero Device Index
and Interface

Number

36 Device
Information

Buffer

On reception of this request, the HWA will store the device information buffer for the downstream connected
device. The format of the device information buffer is given below. The number of devices that an HWA can
support at the same time is specified by the bNumPorts field in the Wire Adapter descriptor. The upper byte of
wIndex (Device Index) can be any value between 0 and bNumPorts – 1.

The lower byte of wIndex specifies the target interface number.

Table 8-54. Device Information Buffer Format

Offset Field Size Value Description

0 bmDeviceAvailabilityInfo 32 Bitmap This bitmap specifies the MAS slots in which the
WUSB device can communicate with the host.

32 bDeviceAddress 1 Number Address of the attached device

33 wPHYRates 2 Bitmap Describes the PHY-level signaling rates
capabilities of this device implementation
represented as a bit-mask. See Section 7.4.1.1

 Wireless Universal Serial Bus Specification, Revision 1.1

 281

Offset Field Size Value Description

35 bmDeviceAttribute 1 Bitmap

Bit Description

6:0 Reserved

7 Disable. If this bit is set to a
1B, then the HWA must not
perform any transactions to
this device.

It is a Request Error if wLength is other than as specified above or if the Device Index is greater than or equal to
the bNumPorts field in the Wire Adapter descriptor.

If the interface specified does not exist, then the device responds with a Request Error.

If the Host Wire Adapter is not configured, the Host Wire Adapter’s response to this request is undefined.

8.2.13.19 Set Device Key
This request sets the key to be used to encrypt/decrypt data when the HWA is sending/receiving data to/from
the device connected downstream of the HWA.

bmRequestType bRequest wValue wIndex wLength Data

00100001B SET_DESCRIPTOR Descriptor
Type and Key

Index

Device Index
and Interface

Number

Key
Descriptor

Length

Key
Descriptor

When the HWA receives this command, it uses the key data in the accompanying key descriptor to update its
copy of the key to be used when sending/receiving data from this device. Host Wire Adapters are only required
to support one key per device. The upper byte of wValue (Descriptor Type) specifies the type of descriptor
being set and the lower byte specifes the Key Index. Bits 4 and 5 of the Key Index field must be set to zero to
inform the HWA that a device key is being set.

The upper byte of the wIndex field specifies the Device index. The Device Index must be less than the
bNumPorts field in the Wire Adapter descriptor.

The lower byte of wIndex specifies the target interface number.

It is a Request Error if wValue is other than as specified above or if the Device index greater than or equal to the
bNumPorts field in the Wire Adapter descriptor.

If the interface specified does not exist, then the device responds with a Request Error.

If the Host Wire Adapter is not configured, the Host Wire Adapter’s response to this request is undefined.

8.2.13.20 Set Group Key
This request sets the Group key to be used to encrypt data when the HWA is sending data to the WUSB cluster.

bmRequestType bRequest wValue wIndex wLength Data

00100001B SET_DESCRIPTOR Descriptor
Type and Key

Index

Interface
Number

Key
Descriptor

Length

Key
Descriptor

When the HWA receives this command, it uses the key data in the accompanying key descriptor to update its
copy of the Group key to be used when sending data to the WUSB cluster. The upper byte of wValue
(Descriptor Type) specifies the type of descriptor being set and the lower byte specifies the Key Index. Bits 4
and 5 of the Key Index field must be set to two.

The lower byte of wIndex specifies the target interface number.

 Wireless Universal Serial Bus Specification, Revision 1.1

 282

It is a Request Error if wLength is other than as specified above.

If the interface specified does not exist, then the device responds with a Request Error.

If the Host Wire Adapter is not configured, the Host Wire Adapter’s response to this request is undefined.

8.2.13.21 Set Num DNTS Slots
This request sets the interval and raw number of notification message time slots available in the DNTS.

bmRequestType bRequest wValue wIndex wLength Data

00100001B SET_NUM_DNTS Interval

And Number of
DNTS Slots

Interface
Number

Zero None

Upon receipt of this request, the HWA will schedule DNTS time slots in subsequent transaction groups. The
upper byte of the wValue field (Interval) specifies the rate at which the HWA must schedule a DNTS time slot.
If the Interval value is set to zero, then the HWA must schedule a DNTS in every transaction group. This field
is expressed in milliseconds.

The lower byte of the wValue field specifies the number of slots that must be available.

The lower byte of wIndex specifies the target interface number.

It is a Request Error if wLength is other than as specified above.

If the interface specified does not exist, then the device responds with a Request Error.

If the Host Wire Adapter is not configured, the Host Wire Adapter’s response to this request is undefined.

8.2.13.22 Set WUSB Cluster ID
This request sets the WUSB Cluster ID.

bmRequestType bRequest wValue wIndex wLength Data

00100001B SET_CLUSTER_ID Cluster ID Interface
Number

Zero None

This request sets the WUSB Cluster ID for this HWA. The wValue field specifies the Cluster Id.

The lower byte of wIndex specifies the target interface number.

It is a Request Error if wLength is other than as specified above.

If the interface specified does not exist, then the device responds with a Request Error.

If the Host Wire Adapter is not configured, the Host Wire Adapter’s response to this request is undefined.

8.2.13.23 Set WUSB MAS
This request sets the MAS that the HWA can perform transaction in.

bmRequestType bRequest wValue wIndex wLength Data

00100001B SET_WUSB_MAS Zero Interface
Number

32 WUSB MAS

This request is used to set/update the currently available Media Access Slots that an HWA can use. WUSB
MAS is an array of 256 entries, each of which corresponds to one of the 256 MAS within a superframe. The
zero entries identify MAS that cannot be used by the HWA while nonzero entries identify MAS in which an
HWA may perform WUSB transactions.

The lower byte of wIndex specifies the target interface number.

It is a Request Error if wLength is other than as specified above.

 Wireless Universal Serial Bus Specification, Revision 1.1

 283

If the interface specified does not exist, then the device responds with a Request Error.

If the Host Wire Adapter is not configured, the Host Wire Adapter’s response to this request is undefined.

8.2.13.24 Set WUSB Stream Index
This request sets the WUSB Stream Index.

bmRequestType bRequest wValue wIndex wLength Data

00100001B SET_STREAM_IDX Stream Index Interface
Number

Zero None

This request sets the WUSB Stream Index for this HWA. The wValue field specifies the Stream Index.

The lower byte of wIndex specifies the target interface number.

It is a Request Error if wLength is other than as specified above.

If the interface specified does not exist, then the device responds with a Request Error.

If the Host Wire Adapter is not configured, the Host Wire Adapter’s response to this request is undefined.

8.2.13.25 WUSB Channel Stop
This request is used to stop the WUSB channel.

bmRequestType bRequest wValue wIndex wLength Data

00100001B WUSB_CH_STOP WUSB
Channel Time

Offset

Interface
Number

Zero None

On reception of this request, the HWA must stop the Wireless USB channel as described in Section 4.16.2.1 of
the Data Flow chapter. The wValue field (WUSB Channel Time Offset) specifies the offset in microseconds
from the current time when the HWA must stop the channel. If remote wake is enabled on the HWA, then it
must support the remote wakeup mechanisms specified in Section 4.16.2.2. The HWA must transition into the
Disabled state after the Wireless USB channel is stopped.

If WUSB Channel Time Offset is zero, then the HWA must cancel the Wireless USB Channel Stop operation.

The lower byte of wIndex specifies the target interface number.

It is a Request Error if wLength is other than as specified above.

If the interface specified does not exist, then the device responds with a Request Error.

If the Host Wire Adapter is not configured, the Host Wire Adapter’s response to this request is undefined.

8.2.14 Notification Information
Asynchronous notification messages are sent back on the notification endpoint. All Host Wire Adapters return
Transfer Completion notifications on the notification endpoint. The format and use of a Transfer Completion
notification is given in Section 8.2.13.11.3.

Host Wire Adapter specific notifications are detailed in Section 8.2.15.3.

8.2.15 HWA Interfaces, Descriptors and Control
This section provides details on the HWA specific interfaces, includes all the descriptors an HWA should
present to host software, HWA class specific control transfers, additional notifications that an HWA can return
to host software and describes how isochronous streaming is supported on an HWA.

 Wireless Universal Serial Bus Specification, Revision 1.1

 284

8.2.15.1 HWA Isochronous Streaming Overview
On a Host Wire Adapter the basic data flow model for Isochronous pipes is identical to the Bulk streaming
model. Host software sends “buffer oriented” transfer requests to the Wire Adapter. The Host Client model is
already based on a client device driver queuing multiple requests to the Wired or Wireless USB Stack in order
to achieve streaming. The host software can propagate the request stream without modification to the HWA. It
is expected that host software will only have to subdivide client transfer requests into a series of smaller transfer
requests depending on the buffering available on that RPipe. Note that although the transfer request model is
‘buffer oriented’ the transfer requests coming from the client already have per-frame annotations. Host software
will include the packetization and when to send/receive (timestamp) information in the transfer request to the
HWA. This is very important as only the client has knowledge of how per-frame annotations should be applied
to a stream. For instance, a client may change the per-frame data amount in order to maintain synchronization.
Note that a relative (as opposed to explicit, per packet) timestamp is sufficient.

For IN transfers, it is important that the feedback/response pipe provide sufficient information for the host
software to map data packets received in specific frames to the appropriate client request buffer area. This
means the HWA must annotate the received data stream with packet boundaries, upon receipt (timestamp) and
correctly identify bad and/or missing packets. An isochronous transfer result is always followed by an
isochronous packet status array. Note that relative timestamp information is sufficient. See Section 8.2.15.4 for
details.

8.2.15.2 HWA Descriptors
Host Wire Adapter descriptors are derived from the general USB device framework. Host Wire Adapter
descriptors define a Host Wire Adapter device. The host accesses these descriptors through the Host Wire
Adapter’s control endpoint. The Host Wire Adapter class pre-defines certain fields in standard USB descriptors.
Other fields are either implementation-dependent or not applicable to this class.

The Wire Adapter class defines additional device class descriptors. Vendor-specific descriptors may be defined.

Host Wire Adapters must support a class specific security descriptor, identical to the security descriptor
returned by all wireless USB devices, to be used by the host to identify the encryption types supported on the
host wire adapters logical down stream ports. It must return the security descriptor as part of its configuration
descriptor. A Host Wire Adapter returns different descriptors based on whether it is operating at high-speed or
full speed.

8.2.15.2.1 Device Descriptor
Table 8-55. Device Descriptor

Offset Field Size Value Description

0 bLength 1 12H Size of this descriptor in bytes, including this field.

1 bDescriptorType 1 1 DEVICE Descriptor Type.

2 bcdUSB 2 200H USB Specification Release Number in Binary-Coded
Decimal. This field identifies the release of the USB
Specification with which the device and its
descriptors are compliant.

4 bDeviceClass 1 EFH Miscellaneous

5 bDeviceSubClass 1 02H Common Class

6 bDeviceProtocol 1 02H Wire Adapter Multifunction Peripheral

7 bMaxPacketSize0 1 40H Maximum packet size for endpoint zero

8 idVendor 2 ID Vendor ID (assigned by the USB-IF)

10 idProduct 2 ID Product ID (assigned by manufacturer)

12 bcdDevice 2 BCD Device release number in binary-coded-decimal

14 iManufacturer 1 Index Index of string descriptor describing manufacturer

 Wireless Universal Serial Bus Specification, Revision 1.1

 285

Offset Field Size Value Description

15 iProduct 1 Index Index of string descriptor describing product

16 iSerialNumber 1 Index Index of string descriptor describing product serial
number

17 bNumConfigurations 1 1 Number of possible configurations

All Host Wire Adapters have a UWB Radio and hence have to export a Radio Control Interface as well (see
Section 8.2.16). To correctly enumerate the HWA, it must set bDeviceClass, bDeviceSubClass and
bDeviceProtocol fields to EFH, 02H and 02H respectively. This class code is defined as the Wire Adapter
Multifunction Peripheral (WAMP) class code.

8.2.15.2.2 Device_Qualifier Descriptor
Table 8-56. Device_Qualifier Descriptor

Offset Field Size Value Description

0 bLength 1 0AH Size of this descriptor in bytes, including this field.

1 bDescriptorType 1 6 DEVICE_QUALIFIER Type

2 bcdUSB 2 200H USB Specification Release Number in Binary-Coded
Decimal. This field identifies the release of the USB
Specification with which the device and its
descriptors are compliant.

4 bDeviceClass 1 EFH Miscellaneous

5 bDeviceSubClass 1 02 Common Class

6 bDeviceProtocol 1 02 Wire Adapter Multifunction Peripheral

7 bMaxPacketSize0 1 Number Maximum packet size for endpoint zero.

8 bNumConfigurations 1 1 Number of possible configurations.

9 bReserved 1 Zero Reserved for future use, must be zero.

8.2.15.2.3 Configuration Descriptor
Table 8-57. Configuration Descriptor

Offset Field Size Value Description

0 bLength 1 9 Size of this descriptor in bytes, including this field.

1 bDescriptorType 1 2 CONFIGURATION Descriptor Type

2 wTotalLength 2 Number Total length of all descriptors in this configuration

4 bNumInterfaces 1 Number Number of interfaces included in this configuration

5 bConfigurationValue 1 Number Value to use to reference this configuration

6 iConfiguration 1 Index Index of String Descriptor describing this
configuration

7 bmAttributes 1 Bitmap Configuration characteristics

D7: Reserved (set to one)

D6: Self-powered

D5: Remote Wakeup (must be set to one)

D4...0: Reserved (reset to zero)

8 bMaxPower 1 mA Maximum power consumption of the USB device
from the bus in this specific configuration when the
device is fully operational. Expressed in 2 mA units

 Wireless Universal Serial Bus Specification, Revision 1.1

 286

Offset Field Size Value Description

(i.e., 50 = 100 mA).

8.2.15.2.4 Other_Speed_Configuration Descriptor
Table 8-58. Other_Speed_Configuration Descriptor

Offset Field Size Value Description

0 bLength 1 9 Size of this descriptor in bytes, including this field.

1 bDescriptorType 1 7 Other_Speed_Configuration Descriptor Type

2 wTotalLength 2 Number Total length of all descriptors in this configuration

4 bNumInterfaces 1 Number Number of interfaces supported by this speed
configuration.

5 bConfigurationValue 1 Number Value to use to select configuration

6 iConfiguration 1 Index Index of string descriptor

7 bmAttributes 1 Bitmap Same as Configuration descriptor

8 bMaxPower 1 mA Same as Configuration descriptor

8.2.15.2.5 Security Descriptors
A Host Wire Adapter must return a security descriptor and all its associated encryption descriptors in its
configuration descriptor.

Table 8-59. Wire Adapter Class Security Descriptor

Offset Field Size Value Description

0 bLength 1 5 Size of this descriptor in bytes, including this field.

1 bDescriptorType 1 12 Security Descriptor Type

2 wTotalLength 2 Number Total length of this descriptor and all encryption
descriptors returned

4 bNumEncryptionTypes 1 Number Number of supported encryption Types

The Host Wire Adapter will return the number of Encryption descriptors as noted in the bNumEncryptionsTypes
field immediately after the Security descriptor. Since this Encryption Descriptor is only used to inform the host
software of the supported encryption methods, the bAuthKeyIndex field must be set to 0x0 in every Encryption
Descriptor that is returned by the Wire Adapter.

NOTE: The security descriptor and its associated encryption descriptors that are returned as part of the
configuration description are used only to determine the supported encryption methods of the Host Wire
Adapter device on its logical downstream ports.

8.2.15.2.6 Data Transfer Interface Descriptor
Table 8-60. Data Transfer Interface Descriptor

Offset Field Size Value Description

0 bLength 1 9 Size of this descriptor in bytes, including this field.

1 bDescriptorType 1 4 INTERFACE Descriptor Type

2 bInterfaceNumber 1 0 Number of this interface.

3 bAlternateSetting 1 0 Value used to select this alternate setting for the
interface identified in the prior field

4 bNumEndpoints 1 3 Number of endpoints used by this interface.

 Wireless Universal Serial Bus Specification, Revision 1.1

 287

Offset Field Size Value Description

5 bInterfaceClass 1 E0H Wireless Controller

6 bInterfaceSubclass 1 02H Wireless USB Wire Adapter

7 bInterfaceProtocol 1 01H Host Wire Adapter Control/Data Streaming interface

8 iInterface 1 Index Index of String Descriptor describing this interface

8.2.15.2.7 Wire Adapter Class Descriptor
This descriptor describes the characteristics of the HWA to host software. This includes but is not limited to the
amount of buffering available on the HWA, the number of RPipes, the maximum number of IEs that the HWA
has storage for and the number of devices that this HWA can have connected to it at the same time.

Table 8-61. Wire Adapter Class Descriptor

Offset Field Size Value Description

0 bLength 1 Number Size of this descriptor in bytes, including this field.

1 bDescriptorType 1 21H Wire Adapter Descriptor Type

2 bcdWAVersion 2 0100H WA Class Specification Release Number in Binary-
Coded Decimal. This field identifies the release of
the WA Class Specification with which this interface
is compliant.

4 bNumPorts 1 Number The maximum number of simultaneous devices that
this HWA can support.

5 bmAttributes 1 Bitmap Reserved, must be set to zero.

6 wNumRPipes 2 Number The number of RPipes supported by this Wire
Adapter

8 wRPipeMaxBlock 2 Number The maximum number of buffer blocks assignable to
all RPipes.

10 bRPipeBlockSize 1 Number The size of an RPipe buffer block, expressed In the
form 2 bRpipeBlockSize-1 bytes per block. For example, a
value of 10 would be 512.

11 bPwrOn2PwrGood 1 Number For Host Wire Adapters, this field must be set to 0.

12 bNumMMCIEs 1 Number This field specifies the number of MMC IE blocks that
a HWA can support at the same time. Each block
must have at least 255 bytes of storage. Valid values
are in the range of 1H to FFH. A zero in this field is
undefined for an HWA.

13 DeviceRemovable 1 Bitmap For Host Wire Adapters, this field is of length 1 and
all bits are set to 0.

8.2.15.2.8 Notification Endpoint Descriptor
This endpoint is used to report all the Wireless USB Device Notifications received by the HWA, Wire Adapter
status and transfer completion notifications.

Table 8-62. Notification Endpoint Descriptor

Offset Field Size Value Description

0 bLength 1 7 Size of this descriptor in bytes, including this field.

1 bDescriptorType 1 5 ENDPOINT Descriptor Type

2 bEndpointAddress 1 Number The address of this endpoint

3 bmAttributes 1 Bitmap Interrupt endpoint of 00000011b.

 Wireless Universal Serial Bus Specification, Revision 1.1

 288

Offset Field Size Value Description

4 wMaxPacketSize 2 40H Maximum packet size for this endpoint

6 bInterval 1 1 Interval for polling endpoint for data transfers.

Expressed in frames or microframes depending on
the device operating speed (i.e., either 1 millisecond
or 125 µs units).

8.2.15.2.9 Data Transfer Write Endpoint Descriptor
Table 8-63. Data Transfer Write Endpoint Descriptor

Offset Field Size Value Description

0 bLength 1 7 Size of this descriptor in bytes, including this field.

1 bDescriptorType 1 5 ENDPOINT Descriptor Type

2 bEndpointAddress 1 Number The address of this endpoint

3 bmAttributes 1 Bitmap BULK endpoint of 00000010b.

4 wMaxPacketSize 2 Number Maximum packet size this endpoint

6 bInterval 1 0 Polling not supported.

8.2.15.2.10 Data Transfer Read Endpoint Descriptor
Table 8-64. Data Transfer Read Endpoint Descriptor

Offset Field Size Value Description

0 bLength 1 7 Size of this descriptor in bytes, including this field.

1 bDescriptorType 1 5 ENDPOINT Descriptor Type

2 bEndpointAddress 1 Number The address of this endpoint

3 bmAttributes 1 Bitmap BULK endpoint of 00000010b.

4 wMaxPacketSize 2 Number Maximum packet size this endpoint

6 bInterval 1 0 Polling not supported.

8.2.15.2.11 Wire Adapter RPipe Descriptor
The Wire Adapter RPipe descriptors are not returned as part of the configuration descriptor for an HWA. Host
software can get each RPipe descriptor by sending a Get RPipe Descriptor (See Section 8.2.13.4) request to the
HWA. The format of the Wire Adapter RPipe descriptor and the description of the fields are given in Table
8-65.

Table 8-65. Wire Adapter RPipe Descriptor

Offset Field Size Value Description

0 bLength 1 1CH Size of this descriptor in bytes, including this field.
This is a read only field.

1 bDescriptorType 1 22H Wire Adapter RPipe Descriptor Type. This is a read
only field.

2 wRPipeIndex 2 Number Number of this RPipe. Zero-based value identifying
the index in the array of concurrent RPipes
supported by this Wire Adapter. This is a read only
field.

4 wRequests 2 Number The number of concurrent requests that can be
assigned to this RPipe. This is a read only field.

 Wireless Universal Serial Bus Specification, Revision 1.1

 289

Offset Field Size Value Description

6 wBlocks 2 Number The number of buffer blocks assigned to this RPipe.
If the value in this field is zero then the Set RPipe
Descriptor request can be used to set the number of
blocks to be assigned to this RPipe.

If the value in this field is not zero then the number
of blocks assigned to this RPipe cannot be changed
by host software.

This field may be modified by host software if this is
set to zero.

8 wMaxPacketSize 2 Number Maximum packet size that this RPipe will use to
communicate with attached device.

10 bMaxBurst 1 Number Maximum data burst size. Valid values are 1
through 16

11 bDeviceInfoIndex 1 Number This field specifies the device index where the
device information buffer is present.

12 bSpeed 1 Number The PhyRate at which to communicate with the
endpoint targeted by RPipe. The value and the
associated rate is given in Section 5.6.

13 bReserved 1 Number This field is reserved and must be set to zero.

14 bEndpointAddress 1 Number Endpoint Address to be used with this RPipe.

Bit Description

3:0 The endpoint number

6:4 Reserved; set to zero

7 Direction, ignored for control
endpoints

0 = OUT endpoint

1 = IN endpoint

15 bDataSequence 1 Number Current data sequence. This is the next data
sequence value to be used when sending data to
the endpoint that this RPipe is targeted at.

16 dwCurrentWindow 4 Number Current Window used for data sequence
management and burst transfers.

20 bMaxDataSequence 1 Number Maximum sequence number that the endpoint
supports. Valid values are 1 through 31.

21 bInterval 1 Number For Interrupt transfers this is the polling interval to
be used by this RPipe in downstream
communications

For Isochronous transfers this is the logical service
interval.

See bInterval in Table 7-28

22 bOverTheAirInterval 1 Number If the transfer type is Isochronous, then this field is
the interval for polling the downstream endpoint.

This field is Reserved and must be set to zero for all
other transfer types.

See bOverTheAirInterval in Table 7-29 for the
encoding of this field.

23 bmAttribute 1 Bitmap Bit Description

1:0 Value Transfer Type

00B Control

 Wireless Universal Serial Bus Specification, Revision 1.1

 290

Offset Field Size Value Description

01B Isochronous

10B Bulk

11B Interrupt

4:2 Transmit Power

See Section 5.2.1.2 for details on the
use of this field.

7:5 Data Burst Preamble Policy

See Table 5-8 for the encoding of
this field.

24 bmCharacteristics 1 Bitmap Transfer types supported on this RPipe

Bit Description

0 1: Control Transfer supported

0: Control Transfer NOT supported

1 1: Isochronous Transfer supported

0: Isochronous Transfer NOT
supported

2 1: Bulk Transfer supported

0: Bulk Transfer NOT supported

3 1: Interrupt Transfer supported

0: Interrupt Transfer NOT
supported

7:4 Reserved

This is a read only field.

25 bmRetryOptions 1 Bitmap Bit Description

3:0 Max Retry Count. The maximum
number of times a transaction must
be retried before the transfer request
is failed.

The valid values are 0 through 15. A
value of zero in this field indicates
that the HWA must not count errors
and there is no limit on the retries.

For Isochronous transfers this field is
set to zero.

6:4 Reserved

7 Low Power Interrupt. If this bit is
set, then this is a low power interrupt
endpoint and the MaxRetryCount
field is ignored.

26 wNumTransactionErrors 2 Number The HWA increments this field when it encounters
an error while performing transactions to the
downstream endpoint targeted by this RPipe.

The host is responsible for resetting this field.

All fields that are not marked read only may be changed by host software by using the Set RPipe Descriptor
request.

 Wireless Universal Serial Bus Specification, Revision 1.1

 291

8.2.15.3 HWA Notification Information
Host Wire Adapters must send back other notifications for BPST Adjustment Change and any device
notification received from a Wireless USB device. The format of each notification is detailed below.

8.2.15.3.1 BPST Adjustment Change
If the adjustment value to the BPST has changed from the previous superframe to the current superframe then
the wire adapter must send a BPST Adjustment Change notification to the host. The format of this notification
is shown in Table 8-66

Table 8-66. BPST Adjustment Change Notification

Offset Field Size Value Description

0 bLength 1 3 Length of this block of data

1 bNotifyType 1 94H NOTIFY_TYPE_BPST_ADJ

2 bAdjustment 1 Number New adjustment value in microseconds

8.2.15.3.2 DN Received Notification
When a host wire adapter receives a device notification from a Wireless USB device it must send that
notification to host software. The notification must be sent to host software as shown in Table 8-67.

Table 8-67. DN Received Notification

Offset Field Size Value Description

0 bLength 1 Number Length of this block of data

1 bNotifyType 1 95H NOTIFY_TYPE_DN_RECEIVED

2 bSourceDeviceAddr 1 Number The address of the device that sent this device
notification

3 bmAttributes 1 Bitmap Bit Description

6:0 Reserved

7 This bit is set if this notification was
received as a secure frame.

4 NotificationSpecific Variable Raw
Data

The device notification received. The HWA is
responsible for decrypting the notification if it was a
secure frame. See Section 7.6 for the various
notifications that an HWA may receive.

Note that the HWA must only send back the bType
and NotificationSpecific data as part of this
notification and must not include the Wireless USB
header.

The only notification that an HWA must locally process is a DN_EPRdy notification.

NOTE: An HWA must send back a DN_Alive notification (see Section 7.6.5) each time it receives a NAK
handshake from a low power interrupt in endpoint.

8.2.15.4 HWA Isochronous Transfers
To start an isochronous transfer to a Wireless USB device connected downstream of a Host Wire Adapter, host
software uses the same basic transfer request mechanism described for bulk, control and interrupt requests. The
only additional information sent is the isochronous packet Information. Isochronous transfer requests to an
HWA use the Isochronous Transfer Request as shown in Table 8-68. This request type allows large transfers to
be segmented into multiple smaller transfers to avoid RPipe buffer overflow on the Host Wire Adapter. The
host will send the number of service intervals that this transfer request describes in dwNumOfPackets field. The

 Wireless Universal Serial Bus Specification, Revision 1.1

 292

host will send the amount of data to be transferred in each service interval in a Packet Length array immediately
after the Transfer Request. The format of this Isochronous Packet Information is shown in Table 8-69.

Further, in the case of OUT transfers, the request, packet information and the data are sent as consecutive
transactions. This allows the Host Wire Adapter to receive and interpret the request first and prepare for data
allocation.

Table 8-68. Isochronous Transfer Request

Offset Field Size Value Description

0 bLength 1 14H Length of this request

1 bRequestType 1 82H REQUEST_TYPE_ISOCHRONOUS – indicates a
Isochronous transfer

2 wRPipe 2 Number RPipe this transfer is targeted to

4 dwTransferID 4 Number Host-assigned ID for this transfer

8 dwTransferLength 4 Number Amount of data following for an OUT transfer or the
maximum amount of returned data for an IN transfer

12 bTransferSegment 1 Bitmap Bit Description

6:0 Segment Number

7 Last Segment

13 bReserved 1 Number Reserved

14 wPresentationTime 2 Number For OUT transfers, this is the wPresentationTime of
the first Wireless USB packet sent by the HWA. See
Table 5-3

For IN transfers, this is the Wireless USB Channel
time by which the transfer must be completed.

16 dwNumOfPackets 4 Number Number of Packet Lengths following

Table 8-69. Isochronous Packet Information

Offset Field Size Value Description

0 wLength 2 Number Length of this block of data

1 bPacketType 1 A0H ISO_PACKET_INFORMATION_TYPE

2 bReserved 1 Zero Reserved for future use, must be zero.

4 PacketLength[n] Variable Array The length of data to be sent/received in each
service interval. Each array element is a word in size.

A Host Wire Adapter uses the isochronous data header format as described in Section 5 in the protocol chapter
to communicate with Wireless USB isochronous endpoints.

Note: A DWA uses native isochronous wireless endpoints to support downstream wired isochronous endpoints.
Therefore, the HWA performs no special handling for a DWA that supports an isochronous endpoint.

8.2.15.4.1 HWA Isochronous OUT Responsibilities
An HWA must aggregate HWA Isochronous Packet data into the largest packets that can be sent to the Wireless
USB isochronous endpoint. It must not split data from a single HWA Isochronous Packet across multiple over-
the-air packets.

Presentation times for over-the-air isochronous packets are calculated based on the wPresentationTime value in
the transfer request and the bInterval value in the RPipe descriptor. The bOverTheAirInterval specified in the
RPipe descriptor determines the rate at which the Wireless USB Isochronous endpoint must be serviced.

 Wireless Universal Serial Bus Specification, Revision 1.1

 293

Figure 8-19 illustrates a Wireless USB Isochronous OUT data stream through an HWA. The illustration is
organized with time flowing from left to right and data flow from top to bottom, where the top illustrates a
Isochronous transfer request to the HWA Data Transfer Write endpoint, down through the HWA RPipe buffer
and finally over the Wireless USB channel to the recipient endpoint.

The host sends an Isochronous Transfer Request (containing the Wireless USB presentation time), the Packet
Information and the data destined for the Wireless USB endpoint. Once it has all the data for this transfer
request, the HWA will start sending the data to the downstream endpoint. The format of the Wireless USB
packet is the standard Wireless USB isochronous data format. In this example, the rate at which the Wireless
USB endpoint is serviced is set to 4.096 ms and the interval between the segments in that packet is set to 1ms.
The Wireless USB endpoint has a wMaxPacketSize of 1000 bytes (corresponds to the Packet length in the
Packet Information) with wOverTheAirPacketSize set to 2048 (wMaxPacketSize in the RPipe Descriptor). The
Isochronous Transfer Request describes a buffer with 32ms worth of data.

In this example, the HWA starts sending the data to the Wireless USB packets before the presentation for that
data. It sends at least 2 Wireless USB packets every 4.096ms. Each packet contains 2 segments of a 1000 each
as per the packetization information present in the Isochronous Transfer Request. The HWA uses the
wPresentationTime in the Isochronous Transfer Request as the wPresentationTime in the first Wireless USB
Packet. The HWA uses the bInterval field in the RPipe descriptor to calculate the wPresentationTime in
subsequent Wireless USB Packets sent to the endpoint. Once the HWA has sent all the data to the Wireless
USB endpoint it sends a Transfer Result along with Packet Status information back to the host on the Data
Transfer Read endpoint.

Figure 8-19. Wireless USB Isochronous OUT Data Stream through an HWA

The HWA is responsible for discarding packets as described in Section 4.11.9 if the current Wireless USB
Channel time has exceeded the presentation time of a packet that the HWA has been unable to transmit. The
HWA must not attempt to transmit a packet whose presentation time has expired.

The HWA must set the HWA Isochronous Packet Status for each HWA Isochronous Packet.

8.2.15.4.2 HWA Isochronous IN Responsibilities
The HWA is required to process received wireless isochronous data packets and return the information over the
wired interface using the transfer result and HWA isochronous packet status format. The HWA parses the
Wireless USB isochronous packet header information and places the data only in the data buffer that will be
returned to the host software.

The HWA must start performing IN transaction to the downstream Wireless USB endpoint as soon as possible
after receiving the Isochronous Transfer request. The first Wireless USB packet is placed in the first location in
the RPipe buffer. The presentation time in this Wireless USB Packet along with the wPresentationTime in the
subsequent Wireless USB packets and the bInterval in the RPipe descriptor is used to determine the location in

 Wireless Universal Serial Bus Specification, Revision 1.1

 294

the RPipe buffer for the data in those Wireless USB packets. The HWA must update the Packet Status length
information for each Wireless USB packet received based on the segment length information present in the
Wireless USB Isochronous header. For a complete transfer, the dwNumOfPackets field in the Isochronous
Transfer request must be equal to the total number of segments in the Wireless USB packets received from the
Wireless USB endpoint.

Once the HWA has received all the data from the Wireless USB endpoint or the Wireless USB channel time
exceeds the wPresentationTime specified in the Isochronous Transfer request, it must retire the Isochronous
Transfer request and send a Transfer Result along with the Packet Status information back to the host on the
Data Transfer Read endpoint.

8.2.15.4.3 HWA Isochronous Transfer Completion
The data and result of an isochronous transfer to a Wireless USB device connected downstream of a Host Wire
Adapter are returned to host software on the Data transfer read endpoint. On completion of an Isochronous
transfer on an HWA, the HWA will send a transfer completion notification on its notification endpoint and
transfer result will be available to host software on its Data Transfer Read endpoint. The Transfer Result will
contain the number of Packet Status records to be expected immediately after the Transfer Result. The format of
the Isochronous Packet Status is shown in Table 8-70. If this was an IN transfer request, then the data read from
the device will be sent after the packet status information.

Table 8-70. HWA Isochronous Packet Status

Offset Field Size Value Description

0 wLength 2 Number Length of this block of data

1 bPacketType 1 A1H ISO_PACKET_STATUS_TYPE

2 bReserved 1 Zero Reserved for future use, must be zero.

4 PacketStatus[n] Variable Array This is an array of Packet Length and Packet Status
tuples.

wPacketLength Actual length of data sent or
received in the frame

wPacketStatus Status of this Packet

8.2.16 Radio Control Interface
An HWA must expose a Radio Control interface so that host software can control the radio. This section
describes the Radio Control interface required to control the UWB Radio. This interface consists of one
interrupt endpoint. This endpoint along with the default control endpoint of the device is used to control the
UWB Radio in the Device.

Control Endpoint This is the default USB control endpoint. All radio control commands
are sent to the device through this endpoint.

Radio Control
Interrupt Endpoint

This Interrupt IN endpoint is used to return status and results of the
radio control commands sent on the default control endpoint.
Asynchronous UWB Radio notifications are also sent back to the host
software via this endpoint.

The device must always send a short packet to terminate transfers on
this endpoint.

The Radio Control interface allows the host software to control and configure the UWB Radio by using several
standard commands. The UWB Radio must be configured before Wireless USB data and notifications can be
exchanged.

Details on flow of operation of UWB Radio Control can be found in chapter 4.13 URC Commands / Events
Processing, of WHCI. [8]
Details on data structures used to implement these flows are provided , in [8]chapter 3.1 UWB Radio Controller

 Wireless Universal Serial Bus Specification, Revision 1.1

 295

Commands and Events. The following paragraphs desribe the Radio Control Descriptors (8.2.16.1) and the
Radio Control Command (8.2.16.2), which are the layer over which Radio Control Commands and Events are
transferred, as per Ref. [8]

8.2.16.1 Radio Control Descriptors
A device must expose the following interface so that host software can properly control the UWB Radio in that
device.

8.2.16.1.1 Radio Control Interface Descriptor
Table 8-71. Radio Control Interface Descriptor

Offset Field Size Value Description

0 bLength 1 9 Size of this descriptor in bytes, including this field.

1 bDescriptorType 1 4 INTERFACE Descriptor Type

2 bInterfaceNumber 1 Number Number of this interface

3 bAlternateSetting 1 0 Value used to select this alternate setting for the
interface identified in the prior field

4 bNumEndpoints 1 1 Number of endpoints used by this interface.

5 bInterfaceClass 1 E0H Wireless Controller

6 bInterfaceSubclass 1 01H RF Controller

7 bInterfaceProtocol 1 02H UWB Radio Control Interface

8 iInterface 1 Index Index of String Descriptor describing this interface

8.2.16.1.2 Radio Control Interface Class Descriptor
This descriptor describes the characteristics of the Radio Control Interface to host software.

Table 8-72. Radio Control Interface Class Descriptor

Offset Field Size Value Description

0 bLength 1 4 Size of this descriptor in bytes, including this field.

1 bDescriptorType 1 23H Radio Control Descriptor Type

2 bcdRCIVersion 2 0100H Radio Control Interface Version number in Binary-
Coded Decimal.

8.2.16.1.3 Radio Control Interrupt Endpoint Descriptor
This endpoint is used to report status and results of the radio control commands. It is also used to send UWB
Radio notifications back to the host software.

Table 8-73. Radio Control Interrupt Endpoint Descriptor

Offset Field Size Value Description

0 bLength 1 7 Size of this descriptor in bytes, including this field.

1 bDescriptorType 1 5 ENDPOINT Descriptor Type

2 bEndpointAddress 1 Number The address of this endpoint

3 bmAttributes 1 Bitmap Interrupt endpoint of 00000011b.

4 wMaxPacketSize 2 200H Maximum packet size this endpoint

6 bInterval 1 1 Interval for polling endpoint for data transfers.

Expressed in frames or microframes depending on

 Wireless Universal Serial Bus Specification, Revision 1.1

 296

the device operating speed (i.e., either 1 millisecond
or 125 µs units).

8.2.16.2 Radio Control Command
To control the UWB Radio only one control transfer command is defined. All UWB Radio Control commands
are encapsulated within a Command Block defined in Table 8-74 and sent using this control transfer request.
The result of the command is sent back on the Radio Control Interrupt endpoint using the Event Block defined
in Table 8-76.

Table 8-74. Execute Radio Control Command

bmRequestType bRequest wValue wIndex wLength Data

00100001B EXEC_RC_CMD Zero Interface
Number

Command
Length

Radio
Control

Command
Block

Table 8-75. Radio Control Request Codes

bRequest Value

EXEC_RC_CMD 40

Table 8-76. Radio Control Command Block (RCCB)

Offset Field Size Value Description

0 bCommandType 1 Number The type of Command.

1 wCommand 2 Number The actual command to be performed

3 bCommandContext 1 Number Host assigned ID for this command.

Valid values are 1 through FEH.

A value of FFH in this field indicates that this is a
RESPONSE to an earlier notification.

A value of 00H in this field is invalid.

4 Parameter0 Var0 Number First parameter for this command. The size and
value of this parameter is specific to the actual
command,

4 + Var0 Parameter1 Var1 Number Second parameter for this command. The size and
value of this parameter is specific to the actual
command,

…

Var ParameterN VarN Number Last parameter for this command. The size and
value of this parameter is specific to the actual
command,

Table 8-77. Radio Control Event Block (RCEB)

Offset Field Size Value Description

0 bEventType 1 Number The type of Event

1 wEvent 2 Number The event that occurred. If this event was a result
of a host issued command then this should match
the wCommand in the RCCB.

 Wireless Universal Serial Bus Specification, Revision 1.1

 297

3 bEventContext 1 Number If this event was a result of a host issued command
then this should match the bCommandContext in
the RCCB.

A value of Zero indicates an Event that occurred
which is not a direct result of a Radio Control
Command.

A value of FFH in this field is invalid.

4 Parameter0 Var0 Number First parameter for this event. The size and value of
this parameter is specific to the actual event

4 + Var Parameter1 Var1 Number Second parameter for this event. The size and
value of this parameter is specific to the actual
event

…

Var ParameterN VarN Number Last parameter for this event. The size and value of
this parameter is specific to the actual event

 Wireless Universal Serial Bus Specification, Revision 1.1

 298

Appendix A
Wireless USB CCM Test Vectors

This chapter provides test vectors for testing CCM encryption and decryption logic. The individual vectors are
designed to reflect genuine Wireless USB operations. Multi-byte numerical values are presented with the most
significant byte on the left and the least significant byte on the right. Byte streams are presented in order of
transmission with the first byte transmitted on the left and the last byte transmitted on the right. All values are
presented in hexadecimal notation.

A.1. Key Derivation
Wireless USB defines a mechanism for deriving temporal keys from the pre-shared Connection Key (CK).

Inputs

Host Address 9876

Device Address 00BE

TKID 019876

Host Nonce 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

Device Nonce 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F

CK F0 E1 D2 C3 B4 A5 96 87 78 69 5A 4B 3C 2D 1E 0F

Results

KCK 4B 79 A3 CF E5 53 23 9D D7 C1 6D 1C 2D AB 6D 3F

PTK C8 70 62 82 B6 7C E9 06 7B C5 25 69 F2 36 61 2D

A.2. Handshake MIC calculation
Wireless USB defines a mechanism for generating the MIC values used to protect Handshake2 and Handshake3
messages. This vector provides the input and outputs for the MIC calculation of a Handshake2 request.

Inputs

Message Number 2

Host Address 9876

Device Address 00BE

TKID 019876

Device Nonce 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F

KCK 4B 79 A3 CF E5 53 23 9D D7 C1 6D 1C 2D AB 6D 3F

CDID 30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F

Results

Handshake2
Data

02 00 76 98 01 00 30 31 32 33 34 35 36 37 38 39
3A 3B 3C 3D 3E 3F 20 21 22 23 24 25 26 27 28 29
2A 2B 2C 2D 2E 2F

MIC 75 6A 97 51 0C 8C 14 7B

A.3. Secure MMC (EO = payload length)

 Wireless Universal Serial Bus Specification, Revision 1.1

 299

This vector presents a secured MMC containing a Host Information IE and a WdntsCTA.

Inputs

Host Address 9876

Device Address FFFF

TKID 019876

KEY C8 70 62 82 B6 7C E9 06 7B C5 25 69 F2 36 61 2D

SFC 001122334455

Packet 40 1C FF FF 76 98 00 00 00 80 (MAC Header)

 00 01 01 23 00 00 00 0F 0E 0D (MMC Header)

 0A 80 (WCTA IE header)

 80 10 00 0C (WdntsCTA)

 00 00 01 FF (end of list)

 14 82 49 00 (Host Info IE)
A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF

EO 28 (l(m)= 0, l(a) = 36)

Results

MAC HDR 48 1C FF FF 76 98 00 00 00 80

Security Hdr 76 98 01 00 26 00 55 44 33 22 11 00

Payload 00 01 01 23 00 00 00 0F 0E 0D 0A 80 80 1000 0C 00 00 01
FF 14 82 49 00 A0 A1
A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF

MIC F8 9A 72 B0 33 C0 9D 55

A.4. Data IN from device (EO = 2)
This vector is for a Data IN packet from a device. The Wireless USB header is authenticated but not encrypted.
The data portion of the payload is fully encrypted.

Inputs

Host Address 9876

Device Address 0002

TKID 019876

KEY C8 70 62 82 B6 7C E9 06 7B C5 25 69 F2 36 61 2D

SFC 001122334456

Packet C0 12 76 98 02 00 00 00 23 C1 (MAC Header)

 81 00 (WUSB Header)

 30 31 32 33 34 35 36 37 (data)
38 39 3A 3B 3C 3D 3E 3F
40 41 42 43 44 45 46 47
48 49 4A 4B 4C 4D 4E 4F

EO 02 (l(m)= 20, l(a) = 10)

Results

MAC HDR C8 12 76 98 02 00 00 00 23 C1

 Wireless Universal Serial Bus Specification, Revision 1.1

 300

Security Hdr 76 98 01 00 02 00 56 44 33 22 11 00

Payload 81 00 41 3A 31 85 C9 85 1B F5 46 E7
C5 93 03 11 85 76 47 ED 9D 95 15 A6
99 CF 47 79 CE C8 6E B0 AD 1D

MIC FD F4 53 64 E2 45 91 F4

 Wireless Universal Serial Bus Specification, Revision 1.1

 301

Appendix B
Wire Adapter Example Descriptor Sets

B.1. Descriptors for DWA
The Wire Adapter class pre-defines certain fields in standard USB descriptors. Other fields are either
implementation-dependent or not applicable to this class.

The sample descriptor set below is for a DWA with 4 ports (all exposed) with the ability to support 3 Data
Transfer Transparent Endpoints, two of them (OUT + IN) belonging to the Data Transfer Interface and
described by Device Wire Adapter Endpoints Mapping Descriptor, while the third one (IN) is desribed by
Transparent RPipe Interface Descriptor. . This DWA supports one encryption type (AES 128 CCM), has 16
RPipes and 256K of buffer space (block size of 2K and 128 blocks). This DWA does not support data packet
size adjustment. The DWA also supports Concatenation of Transfer Requests / Results and Data and
Aggregation of multiple Transfer Requests / Results.

Note: For the descriptors and fields shown below, the bits in a field are organized in a little-endian fashion; that
is, bit location 0 is the least significant bit and bit location 7 is the most significant bit of a byte value.

Table B-1. Device Descriptor:

Field Value

bLength 12H

bDescriptorType 01H (Device)

bcdUSB 0250H (Wireless USB Compliant)

bDeviceClass EFH (Miscellaneous)

bDeviceSubClass 02H (Common Class)

bDeviceProtocol 02H (Wire Adapter Multifunction Peripheral)

bMaxPacketSize0 FFH

idVendor Implementation-dependent

idProduct Implementation-dependent

bcdDevice Implementation-dependent

iManufacturer Implementation-dependent

iProduct Implementation-dependent

iSerialNumber Implementation-dependent

bNumConfigurations 1

Table B-2. BOS Descriptor:

Field Value

bLength 05H

bDescriptorType 0FH (BOS)

wTotalLength 10H

bNumDeviceCaps 1

 Wireless Universal Serial Bus Specification, Revision 1.1

 302

Table B-3. Wireless USB Device Capabilities – UWB:

Field Value

bLength 0BH

bDescriptorType 10H (Device Capability)

bDevCapabilityType 01H (Wireless USB)

bmAttributes Implementation-dependent

wPHYRates Implementation-dependent

bmTFITXPowerInfo Implementation-dependent

bmFFITXPowerInfo Implementation-dependent

bmBandGroup Implementation-dependent

bReserved 0

Table B-4. Security Descriptor (One Encryption Type supported):

Field Value

bLength 05H

bDescriptorType 0CH (Security)

wTotalLength 0AH

bNumEncryptionTypes 1

Table B-5. Encryption Type Descriptor (AES-128 in CCM mode):

Field Value

bLength 05H

bDescriptorType 0EH (Encryption Type)

bEncryptionType 02H (AES-128 in CCM mode)

bEncryptionValue Implementation-dependent

bAuthKeyIndex Implementation-dependent

Table B-6 Configuration Descriptor

Field Value

bLength 09H

bDescriptorType 02H (Configuration)

wTotalLength N (Implementation-dependent)

bNumInterfaces 2

bConfigurationValue Implementation-dependent

iConfiguration Implementation-dependent

bmAttributes Implementation-dependent

bMaxPower 0

 Wireless Universal Serial Bus Specification, Revision 1.1

 303

Table B-7. Interface Association Descriptor

Field Value

bLength 08H

bDescriptorType 0BH (Interface Association)

bFirstInterface 0

bInterfaceCount 02H

bFunctionClass E0H (Wireless Controller)

bFunctionSubClass 02H (Wireless USB Adapter)

bFunctionProtocol 02H (Device Wire Adapter Control/Data Streaming
Programming Interface)

iFunction Implementation-dependent

Table B-8. Interface Descriptor (Data Transfer Interface):

Field Value

bLength 09H

bDescriptorType 04H (Interface)

bInterfaceNumber 0

bAlternateSetting 0

bNumEndpoints 3

bInterfaceClass E0H (Wireless Controller)

bInterfaceSubClass 02H (Wireless USB Adapter)

bInterfaceProtocol 02H (Device Wire Adapter Control/Data Streaming
Programming Interface)

iInterface Implementation-dependent

Table B-9. Device Wire Adapter Class Descriptor:

Field Value

bLength 0EH

bDescriptorType 21H (Wire Adapter Descriptor Type)

bcdWAVersion 0110H (WA Class Specification Version)

bNumPorts 4

bmAttributes Implementation-dependent

wNumRPipes 10H

wRPipeMaxBlock 80H

bRPipeBlockSize 06H (block size is 3584 bytes)

bPwrOn2PwrGood Implementation-dependent

bNumMMCIEs 0

wRequests 30H (~3 requests per RPipe on average)

bmDWACapabilities 06H (Transfer Requests / Results concatenation and
Aggregation of Data with Transfer Requests / Results is
supported)

wMaxConcatenatedDa
taLength

Implementation-dependent

 Wireless Universal Serial Bus Specification, Revision 1.1

 304

DeviceRemovable 1EH

Table B-10. Device Wire Adapter Endpoints Mapping Descriptor:

Field Value

bLength 14H

bDescriptorType 23H (Device Wire Adapter Endpoints Endpoints Mapping)

bEndpointAddress #1 01H (Endpoint number = 1, Direction – OUT, Implementation-
dependent)

bEndpointType #1 01H – Default (Bulk OUT) Transfers Request endpoint

bEndpointAddress #2 81H (Endpoint number = 1, Direction – IN, Implementation-
dependent)

bEndpointType #2 02H – Default (Bulk IN) Transfers Results endpoint

bEndpointAddress #3 02H (Endpoint number = 2, Direction - OUT, Implementation-
dependent)

bEndpointType #3 05H - Data Transfers endpoint , Bulk OUT

bEndpointAddress #4 82H (Endpoint number = 2, Direction - IN, Implementation-
dependent)

bEndpointType #4 05H - Data Transfers endpoint, Bulk IN

bEndpointAddress #5 03H (Endpoint number = 3, Direction - OUT, Implementation-
dependent)

bEndpointType #5 06H - Data Transfers Transparent endpoint, OUT

bEndpointAddress #6 83H (Endpoint number = 3, Direction - IN, Implementation-
dependent)

bEndpointType #6 06H - Data Transfers Transparent endpoint, IN

 Table B-11. Transfer Request Endpoint Descriptor (for Transfer Requests Endpoint):

Field Value

bLength 07H

bDescriptorType 05H (Endpoint)

bEndpointAddress 01H (Implementation-dependent; Bit 7: Direction = Out(0))

bmAttributes Transfer Type = Bulk (00000010B)

wMaxPacketSize Implementation-dependent

bInterval 0

Table B-12. Transfer Request Endpoint Companion Descriptor (for Transfer Requests Endpoint)

Field Value

bLength 0AH

bDescriptorType 11H (Wireless Endpoint Companion)

bMaxBurst Implementation-dependent

bMaxSequence Implementation-dependent

wMaxStreamDelay 0

wOverTheAirPacketSize 0

bOverTheAirInterval 0

bmCompAttributes 0

 Wireless Universal Serial Bus Specification, Revision 1.1

 305

Table B-13. Transfer Result Endpoint Descriptor (for Transfer Result Endpoint):

Field Value

bLength 07H

bDescriptorType 05H (Endpoint)

bEndpointAddress 81H (Implementation-dependent; Bit 7: Direction = Out(0))

bmAttributes Transfer Type = Bulk (00000010B)

wMaxPacketSize Implementation-dependent

bInterval 0

Table B-14. Transfer Result Endpoint Companion Descriptor (for Transfer Result Endpoint)

Field Value

bLength 0AH

bDescriptorType 11H (Wireless Endpoint Companion)

bMaxBurst Implementation-dependent

bMaxSequence Implementation-dependent

wMaxStreamDelay 0

wOverTheAirPacketSize 0

bOverTheAirInterval 0

bmCompAttributes 0

Table B-15. Data Transfer Endpoint Descriptor (for Data Transfer OUT Endpoint):

Field Value

bLength 07H

bDescriptorType 05H (Endpoint)

bEndpointAddress Implementation-dependent; Bit 7: Direction = Out(0)

bmAttributes Transfer Type = Bulk (00000010B)

wMaxPacketSize Implementation-dependent

bInterval 0

Table B-16. Data Transfer Endpoint Companion Descriptor (for Data Transfer OUT Endpoint)

Field Value

bLength 0AH

bDescriptorType 11H (Wireless Endpoint Companion)

bMaxBurst Implementation-dependent

bMaxSequence Implementation-dependent

wMaxStreamDelay 0

wOverTheAirPacketSize 0

bOverTheAirInterval 0

bmCompAttributes 0

 Wireless Universal Serial Bus Specification, Revision 1.1

 306

Table B-17. Data Transfer Endpoint Descriptor (for Data Transfer IN Endpoint):

Field Value

bLength 07H

bDescriptorType 05H (Endpoint)

bEndpointAddress Implementation-dependent; Bit 7: Direction = In(1)

bmAttributes Transfer Type = Bulk (00000010B)

wMaxPacketSize Implementation-dependent

bInterval 0

Table B-18. Data Transfer Endpoint Companion Descriptor (for Data Transfer IN Endpoint)

Field Value

bLength 0AH

bDescriptorType 11H (Wireless Endpoint Companion)

bMaxBurst Implementation-dependent

bMaxSequence Implementation-dependent

wMaxStreamDelay 0

wOverTheAirPacketSize 0

bOverTheAirInterval 0

bmCompAttributes 0

Table B-19. Data Transfer Transparent Endpoint Descriptor (for Data Transfer Transparent OUT
Endpoint):

Field Value

bLength 07H

bDescriptorType 05H (Endpoint)

bEndpointAddress 03H (Implementation-dependent; Bit 7: Direction = In(1))

bmAttributes Implementation-dependent, can be Bulk, Isochronous or
Interrupt

wMaxPacketSize Implementation-dependent

bInterval 0 if Bulk, Implementation-dependent if Isochronous or
Interrupt

Table B-20. Data Transfer Transparent Endpoint Companion Descriptor (for Data Transfer
Transparent OUT Endpoint):

Field Value

bLength 0AH

bDescriptorType 11H (Wireless Endpoint Companion)

bMaxBurst Implementation-dependent

bMaxSequence Implementation-dependent

wMaxStreamDelay 0

wOverTheAirPacketSize 0

bOverTheAirInterval 0 if Bulk, Implementation dependent if Isochronous or
Interrupt

 Wireless Universal Serial Bus Specification, Revision 1.1

 307

bmCompAttributes 0

Table B-21. Data Transfer Transparent Endpoint Descriptor (for Data Transfer Transparent IN
Endpoint):

Field Value

bLength 07H

bDescriptorType 05H (Endpoint)

bEndpointAddress 83H (Implementation-dependent; Bit 7: Direction = In(1))

bmAttributes Implementation-dependent, can be Bulk, Isochronous or
Interrupt

wMaxPacketSize Implementation-dependent

bInterval 0 if Bulk, Implementation-dependent if Isochronous or
Interrupt

Table B-22. Data Transfer Transparent Endpoint Companion Descriptor (for Data Transfer
Transparent IN Endpoint):

Field Value

bLength 0AH

bDescriptorType 11H (Wireless Endpoint Companion)

bMaxBurst Implementation-dependent

bMaxSequence Implementation-dependent

wMaxStreamDelay 0

wOverTheAirPacketSize 0

bOverTheAirInterval 0 if Bulk, Implementation dependent if Isochronous or
Interrupt

bmCompAttributes 0

Table B-23. Transparent RPipe Interface Descriptor (for Transparent RPipe defined by a separate
interface):

Field Value

bLength 09H

bDescriptorType 04H (Interface)

bInterfaceNumber 1

bAlternateSetting 0

bNumEndpoints 2

bInterfaceClass E0H (Wireless Controller)

bInterfaceSubClass 02H (Wireless USB Wire Adapter)

bInterfaceProtocol 03H (Device Wire Adapter Transparent RPipe Interface)

iInterface Implementation-dependent

 Wireless Universal Serial Bus Specification, Revision 1.1

 308

Table B-24. Data Transfer Transparent Endpoint Descriptor (for Data Transfer Transparent IN
Endpoint):

Field Value

bLength 07H

bDescriptorType 05H (Endpoint)

bEndpointAddress 84H (Implementation-dependent; Bit 7: Direction = In(1))

bmAttributes Implementation-dependent, can be Bulk, Isochronous or
Interrupt

wMaxPacketSize Implementation-dependent

bInterval 0 if Bulk, Implementation-dependent if Isochronous or
Interrupt

Table B-25. Data Transfer Transparent Endpoint Companion Descriptor (for Data Transfer
Transparent IN Endpoint):

Field Value

bLength 0AH

bDescriptorType 11H (Wireless Endpoint Companion)

bMaxBurst Implementation-dependent

bMaxSequence Implementation-dependent

wMaxStreamDelay 0

wOverTheAirPacketSize 0

bOverTheAirInterval 0 if Bulk, Implementation dependent if Isochronous or
Interrupt

bmCompAttributes 0

B.2. Descriptors for HWA
The sample descriptor set below is for an HWA operating on a high-speed USB 2.0 bus, which can connect up
to 16 devices simultaneously on its downstream Wireless USB bus. This HWA supports one encryption type
(AES 128 CCM), has 32 RPipes and 256K of buffer space (block size of 4K and 64 blocks). The HWA also
exports a Radio Control Interface to communicate with the UWB radio in the device.

Table B-26. Device Descriptor (high-speed information):

Field Value

bLength 12H

bDescriptorType 01H

bcdUSB 0200H (USB 2.0 compliant)

bDeviceClass EFH (Miscellaneous)

bDeviceSubClass 02H (Common Class)

bDeviceProtocol 02H (Wire Adapter Multifunction Peripheral)

bMaxPacketSize0 40H

idVendor Implementation-dependent

idProduct Implementation-dependent

bcdDevice Implementation-dependent

iManufacturer Implementation-dependent

 Wireless Universal Serial Bus Specification, Revision 1.1

 309

iProduct Implementation-dependent

iSerialNumber Implementation-dependent

bNumConfigurations 1

Table B-27. Device_Qualifier Descriptor (full-speed information)

Field Value

bLength 0AH

bDescriptorType 06H (Device Qualifier)

bcdUSB 0200H (USB 2.0 Compliant)

bDeviceClass EFH (Miscellaneous)

bDeviceSubClass 02H (Common Class)

bDeviceProtocol 02H (Wire Adapter Multifunction Peripheral)

bMaxPacketSize0 40H

bNumConfigurations 1

bReserved 0

Table B-28. Security Descriptor (One Encryption Type supported):

Field Value

bLength 05H

bDescriptorType 0CH (Security)

wTotalLength 0AH

bNumEncryptionTypes 1

Table B-29. Encryption Type Descriptor (AES-128 in CCM mode):

Field Value

bLength 05H

bDescriptorType 0EH (Encryption Type)

bEncryptionType 02H (AES-128 in CCM mode)

bEncryptionValue Implementation-dependent

bAuthKeyIndex Implementation-dependent

Table B-30. Configuration Descriptor (high-speed information)

Field Value

bLength 09H

bDescriptorType 02H (Configuration)

wTotalLength N

bNumInterfaces 2

bConfigurationValue Implementation-dependent

iConfiguration Implementation-dependent

bmAttributes Implementation-dependent

bMaxPower The minimum amount of bus power the HWA will consume in
this configuration

 Wireless Universal Serial Bus Specification, Revision 1.1

 310

Table B-31. Interface Descriptor (Data Transfer Interface):

Field Value

bLength 09H

bDescriptorType 04H (Interface)

bInterfaceNumber 0

bAlternateSetting 0

bNumEndpoints 3

bInterfaceClass E0H

bInterfaceSubClass 02H

bInterfaceProtocol 01H (Host Wire Adapter)

iInterface Implementation-dependent

Table B-32. Wire Adapter Class Descriptor:

Field Value

bLength 0EH

bDescriptorType 21H (Wire Adapter Descriptor Type)

bcdWAVersion 100H (WA Class Specification Version)

bNumPorts 16

bmAttributes 0

wNumRPipes 20H

wRPipeMaxBlock 40H

bRPipeBlockSize 0DH

bPwrOn2PwrGood 0

bNumMMCIEs 4

DeviceRemovable 0

Table B-33. Endpoint Descriptor (for Notification Endpoint):

Field Value

bLength 07H

bDescriptorType 05H (Endpoint)

bEndpointAddress Implementation-dependent; Bit 7: Direction = In(1)

bmAttributes Transfer Type = Interrupt (00000011B)

wMaxPacketSize 40H

bInterval 1

Table B-34. Endpoint Descriptor (for Data Transfer Write Endpoint):

Field Value

bLength 07H

bDescriptorType 05H (Endpoint)

bEndpointAddress Implementation-dependent; Bit 7: Direction = Out(0)

bmAttributes Transfer Type = Bulk (00000010B)

wMaxPacketSize 200H

 Wireless Universal Serial Bus Specification, Revision 1.1

 311

bInterval 0

Table B-35. Endpoint Descriptor (for Data Transfer Read Endpoint):

Field Value

bLength 07H

bDescriptorType 05H (Endpoint)

bEndpointAddress Implementation-dependent; Bit 7: Direction = In(1)

bmAttributes Transfer Type = Bulk (00000010B)

wMaxPacketSize 200H

bInterval 0

Table B-36. Interface Descriptor (Radio Control Interface Alternate Setting 0:

Field Value

bLength 09H

bDescriptorType 04H (Interface)

bInterfaceNumber 1

bAlternateSetting 0

bNumEndpoints 1

bInterfaceClass E0H (Wireless Controller)

bInterfaceSubClass 01H (RF Controller)

bInterfaceProtocol 02H (UWB Radio Control Interface Programming Interface

iInterface Implementation-dependent

Table B-37. Radio Control Interface Class Descriptor:

Field Value

bLength 04H

bDescriptorType 23H (Radio Control Descriptor Type)

bcdRCIVersion 0100H (Radio Control Interface Version)

Table B-38. Endpoint Descriptor (for Radio Control Interrupt Endpoint):

Field Value

bLength 07H

bDescriptorType 05H (Endpoint)

bEndpointAddress Implementation-dependent; Bit 7: Direction = In(1)

bmAttributes Transfer Type = Interrupt (00000011B)

wMaxPacketSize 40H

bInterval 1

Table B-39. Interface Descriptor (Radio Control Interface Alternate Setting 1):

Field Value

bLength 09H

bDescriptorType 04H (Interface)

 Wireless Universal Serial Bus Specification, Revision 1.1

 312

bInterfaceNumber 1

bAlternateSetting 1

bNumEndpoints 1

bInterfaceClass E0H (Wireless Controller)

bInterfaceSubClass 01H (RF Controller)

bInterfaceProtocol 02H (UWB Radio Control Interface Programming Interface)

iInterface Implementation-dependent

Table B-40. Radio Control Interface Class Descriptor:

Field Value

bLength 04H

bDescriptorType 23H (Radio Control Descriptor Type)

bcdRCIVersion 0100H (Radio Control Interface Version)

Table B-41. Endpoint Descriptor (for Radio Control Interrupt Endpoint):

Field Value

bLength 07H

bDescriptorType 05H (Endpoint)

bEndpointAddress Implementation-dependent; Bit 7: Direction = In(1)

bmAttributes Transfer Type = Interrupt (00000011B)

wMaxPacketSize 200H

bInterval 1

Table B-42. Other_Speed_Configuration Descriptor (full-speed information):

Field Value

bLength 09H

bDescriptorType 07H (Other Speed Configuration)

wTotalLength N

bNumInterfaces 2

bConfigurationValue Implementation-dependent

iConfiguration Implementation-dependent

bmAttributes Implementation-dependent

bMaxPower The minimum amount of bus power the HWA will consume in
full-speed configuration

Table B-43. Interface Descriptor (Data Transfer Interface):

Field Value

bLength 09H

bDescriptorType 04H (Interface)

bInterfaceNumber 0

bAlternateSetting 0

bNumEndpoints 3

 Wireless Universal Serial Bus Specification, Revision 1.1

 313

bInterfaceClass E0H (Wireless Controller)

bInterfaceSubClass 02H (Wireless USB Wire Adapter)

bInterfaceProtocol 01H (Host Wire Adapter Control/Data Streaming
Programming Interface)

iInterface Implementation-dependent

Table B-44. Wire Adapter Class Descriptor:

Field Value

bLength 0CH

bDescriptorType 21H (Wire Adapter Descriptor Type)

bcdWAVersion 100H (WA Class Specification Version)

bNumPorts 16

bmAttributes 0

wNumRPipes 20H

wRPipeMaxBlock 40H

bRPipeBlockSize 0DH

bPwrOn2PwrGood 0

bNumMMCIEs 4

DeviceRemovable 0

Table B-45. Endpoint Descriptor (for Notification Endpoint):

Field Value

bLength 07H

bDescriptorType 05H (Endpoint)

bEndpointAddress Implementation-dependent; Bit 7: Direction = In(1)

bmAttributes Transfer Type = Interrupt (00000011B)

wMaxPacketSize 40H

bInterval 1

Table B-46. Endpoint Descriptor (for Data Transfer Write Endpoint):

Field Value

bLength 07H

bDescriptorType 05H (Endpoint)

bEndpointAddress Implementation-dependent; Bit 7: Direction = Out(0)

bmAttributes Transfer Type = Bulk (00000010B)

wMaxPacketSize 40H

bInterval 0

Table B-47. Endpoint Descriptor (for Data Transfer Read Endpoint):

Field Value

bLength 07H

bDescriptorType 05H (Endpoint)

bEndpointAddress Implementation-dependent; Bit 7: Direction = In(1)

 Wireless Universal Serial Bus Specification, Revision 1.1

 314

bmAttributes Transfer Type = Bulk (00000010B)

wMaxPacketSize 40H

bInterval 0

Table B-48. Interface Descriptor (Radio Control Interface):

Field Value

bLength 09H

bDescriptorType 04H (Interface)

bInterfaceNumber 1

bAlternateSetting 0

bNumEndpoints 1

bInterfaceClass E0H (Wireless Controller)

bInterfaceSubClass 01H (RF Controller)

bInterfaceProtocol 02H (UWB Radio Control Interface Programming Interface)

iInterface Implementation-dependent

Table B-49. Radio Control Interface Class Descriptor:

Field Value

bLength 04H

bDescriptorType 23H (Radio Control Descriptor Type)

bcdRCIVersion 0100H (Radio Control Interface Version)

Table B-50. Endpoint Descriptor (for Radio Control Interrupt Endpoint):

Field Value

bLength 07H

bDescriptorType 05H (Endpoint)

bEndpointAddress Implementation-dependent; Bit 7: Direction = In(1)

bmAttributes Transfer Type = Interrupt (00000011B)

wMaxPacketSize 40H

bInterval 1

Wireless Universal Serial Bus Specification, Revision 1.1

 315

Appendix C
Backward Compatibility Requirements

This appendix specifies the backward compatibility requirements for hosts and devices that comply to the
Wireless USB specification, Revision 1.1.

C.1. Backward Compatibility Requirements for 1.1 hosts
Hosts that conform to this revision of the Wireless USB specification (referred to as 1.1 hosts) are required to
work with Self-Beaconing Devices that conform to the Wireless USB specification, Revision 1.0 (referred to as
1.0 Self-Beaconing Devices). The bcdUSB field in the device descriptor indicates which revision of the
specification that a device conforms to (see Section 7.4.1). Since 1.1 devices are required to include a WUSB
ASIE in their beacons (see Section 7.7.7), absence of the WUSB ASIE in a device’s beacon also indicates that
the device is a 1.0 device. If a 1.1 host is connected to a 1.0 Self-Beaconing Device, the host is required to
perform the following backward compatibility functions (see Section C.3 for the description of the related
device notification and standard requests):

 The host must receive the DN_MASAvailChanged device notification generated by the device. The
host uses the GetStatus(MASAvailability) Wireless USB standard request to get the device’s MAS
availability information. The host may use the MAS availability information returned via this request
or the MAS availability information transmitted in the device’s beacon to adjust its Wireless USB
channel reservation.

 The host uses the SetWUSBData(DRPIE Info) standard request to send the DRP IE information to the
device. The host uses the SetFeature(TX DRP IE) standard request to instruct the device to add a DRP
IE in its beacons. The host uses the ClearFeature(TX DRP IE) standard request to instruct the device to
remove the DRP IE from its beacons. The host uses the GetStatus(Wireless USB Feature) to request
the device to return the current value of Wireless USB specific feature.

1.1 Hosts are required not to send the following IEs to 1.0 devices:

 Wireless USB Release Channel IE

 Discard IE – it is assume that the 1.0 endpoit is capable of ordering received packets according to
presentation time

 DN_RemoteWakeup

C.2. Backward Compatibility Requirements for 1.1 devices
Devices that conform to this specification (referred to as 1.1 devices) are required to work with hosts that
conform to the Wireless USB specification, Revision 1.0 (referred to as 1.0 hosts). Since 1.1 hosts are required
to include a WUSB ASIE in their beacons (see Section 7.7.7), absence of the WUS ASIE in a host’s beacon
indicates that the host is a 1.0 host. If a 1.1 device is connected to a 1.0 host, the device is required to perform
the following backward compatibility functions (see section C.3 for the description of the related device
notification and standard requests):.

 When the device detects a change in its MAS availability, it must transmit a DN_MASAvailChange
notification. When the device receives a GetStatus(MASAvailability) standard request, it must send its
MAS availability information. The format of this MAS Availability information is different from that
broadcast in the DRP Availability IE, in that the MAS that comprise the Wireless USB channel
reservation will be indicated as available.

 When the device receives a SetWUSBData(DRPIE Info), a SetFeature(TX DRP IE) or a
ClearFeature(TX DRP IE) standard request from the host, it must finish the control transfer gracefully

Wireless Universal Serial Bus Specification. Revision 1.1

 316

and ignore the information in the request. When the device receives a GetStatus(Wireless USB
Feature), it must finish the control transfer gracefully.

1.1 devices are not required to support the following IEs defined in Wireless USB 1.0 when operating with 1.0
hosts, and shall ignore them if received:

 Release Channel IE

 Discard IE

 Transmit Packet Adjustment IE

C.3. Standard Wireless USB Device Requests for Backward Compatibility
In addition to the standard Wireless USB device request defined in section 7.3, 1.1 hosts and 1.1 devices are
required to support standard Wireless USB device requests that are defined in this section in order to maintain
backward compatibility.

C.3.1 Get Status
This request returns status information about different portions of a device.

bmRequestType bRequest wValue wIndex wLength Data

10000000B GET_STATUS Zero Device Status Selector Variable Status Selector Data

Table C-1. Device-Level Status Selector Encodings for wIndex

wIndex Status Type Description

0001H Wireless USB
Feature

This encoding returns the current values of Wireless USB specific
features.

0004H MAS
Availability

This encoding instructs the device to return its MAS Availability
information, see below for details. This request must only be sent to
Self Beaconing devices.

Wireless USB Features

When the wIndex value is Wireless USB Feature Status, the device returns the information illustrated in
Figure 7-3. The default values of these features after any device power-up or reset event is zero.

Byte D7 D6 D5 D4 D3 D2 D1 D0

0 Reserved, must be set to zero TX DRP IE

Figure C-1. Information Returned by GetStatus(WirelessUSBFeatures)

The TX DRP IE field indicates whether the device is enabled to add a DRP IE to its beacon. If TX DRP IE is a
one, the device transmits the DRP IE information set by the cluster host. This field is changed by SetFeature()
and ClearFeature(). This is a read-only field unless the device is a Self-beaconing device.

Note, a 1.1 host must be able to issue GetStatus(Wireless USB Features) request to the 1.0 device.

Note, a 1.1 device must complete the GetStatus(Wireless USB Features) request issued by the 1.0 host
gracefully and return a one in the TX DRP IE field.

MAS Availability

When the wIndex value is equal to MAS Availability, the device will then proceed to accumulate information
from its neighbor’s beacons about which MAS slots are available for this device to use (not reserved by any
neighbor not a member of the Wireless USB cluster). Note that the device may have MAS Availability
information that is current so that it does not have to accumulate the information. The data content of the data

Wireless Universal Serial Bus Specification, Revision 1.1

 317

returned by the device is formatted as illustrated in Table C-2Error! Not a valid bookmark self-reference..
The device must ignore its host’s DRP IEs for the current Wireless USB channel when building its availability
map.

The host must only issue this GetStatus request to a device that has identified itself as a Self-beaconing device.

Table C-2. MAS Availability Device Status Format

Offset Field Size Value Description

0 bmMASAvailability 32 Bitmap This is a 256-bit map, where each bit location
corresponds to a MAS slot in the MAC Layer super-
frame. A 1B in a bit location means that the device is
available for a reservation in the corresponding MAS
slot. A 0B indicates the device is not available. Bit 0
corresponds to MAS slot 0.

Note, a 1.1 host must be able to issue a GetStatus(MAS Availability) request to the 1.0 device.

Note, a 1.1 devices must complete the GetStatus(MAS Availability) request issued by the 1.0 host gracefully
and return the valid MAS availability information to the host.

C.3.2 Set WUSB Data(DRPIE Info)

bmRequestType bRequest wValue wIndex wLength Data

00000000B SET_WUSB_DATA WUSB Data Selector Zero WUSB Data
Length

WUSB Data

Table C-3. Wireless USB Data Selector Encodings for wValue

wValue Selector Name Description

0001H DRPIE Info This encoding indicates that the WUSB Data is information the
device must use to construct and transmit a DRP IE in its beacon.
This encoding must only be used to send DRP IE information to a
Self-beaconing device. Table C- illustrates the format of the WUSB
Data for this encoding.

Wireless Universal Serial Bus Specification. Revision 1.1

 318

DRPIE Information

A self-beaconing device uses this data in conjunction with data it derives from its host’s Wireless USB channel
to construct the DRP IE that it transmits in its beacon. A host may issue this command regardless of the current
setting of the TX DRP IE feature. The device must include the new data within the next 2 Beacon transmissions.
The Self Beaconing device must not modify the contents of the received DRP IE.

Table C-4. DRP IE WUSB Data Format

Offset Field Size Value Description

0 bmAttributes 1 Bitmap The values of these fields are used to construct the
DRP Control field of a DRP IE. The field definitions
are:

Bits Description

2:0 Reservation Priority

7:3 Reserved. Must be zero

1 DRPIEData 4N DRP Allocation This is the DRP Allocation blocks that must be
included in the DRP IE transmitted by the device. N
is the number of reservation blocks and the size of
each block is 4 bytes. See Table 7-60 for full layout
of a cluster member DRP IE layout.

Note, if the Self Beaconing device does not have an existing DRP IE for this Wireless USB channel, it simply
adds the received DRP IE to its beacon. If the device has an existing DRP IE for this Wireless USB channel,
then it must replace the existing DRP IE (for this Wireless USB channel) with the new DRP IE provided in this
command payload.

Note, a 1.1 host must be able to issue a SetWUSBData(DRPIE Info) request to the 1.0 device.

Note, a 1.1 devices must complete the SetWUSBData(DRPIE Info) request issued by the 1.0 host gracefully
and discard the data.

C.3.3 Set Feature(TX DRP IE)

bmRequestType bRequest wValue wIndex wLength Data

00000000B SET_FEATURE Feature Selector =
3

 Wireless USB Feature Selector

= TX DRP IE

Zero None

Table C-78. Features Modifiable via SetFeature()

Wireless USB
Feature Selector Description

TX DRP IE (=0) TX_DRPIE. The side-effect of this setting is that the device must add a DRP
IE to its beacon. The data for the DRP IE comes from information extracted
from the Wireless USB Channel and from the host setting the WUSB
Control Data for DRP IE Data. This request must be sent only to a Self
Beaconing device.

Note, a 1.1 host must be able to issue a SetFeature(TX DRP IE) request to the 1.0 device.

Note, a 1.1 devices must complete the SetFeature(TX DRP IE) request issued by the 1.0 host gracefully and
ignore the information.

C.3.4 Clear Feature(TX DRP IE)

bmRequestType bRequest wValue wIndex wLength Data

Wireless Universal Serial Bus Specification, Revision 1.1

 319

bmRequestType bRequest wValue wIndex wLength Data

00000000B CLEAR_FEATURE Feature Selector =
3

 Wireless USB Feature
Selector = TX DRP IE

Zero None

Table C-6. Features Modifiable via ClearFeature()

Wireless USB
Feature Selector Explanation

TX DRP IE (=0) On receipt of this request, the device will remove the associated DRP IE
from its MAC Layer Beacon. This request must only be sent to Self
Beaconing devices.

Note, a 1.1 host must be able to issue a ClearFeature(TX DRP IE) request to the 1.0 device.

Note, a 1.1 devices must complete the ClearFeature(TX DRP IE) request issued by the 1.0 host gracefully and
ignore the information.

C.4. Device Notifications for Backward Compatibility
In addition to device notifications defined in section 7.6. 1.1 hosts and 1.1 devices are required to support
device notifications that are defined in this section in order to maintain backward compatibility.

Table C-7. Device Notification Message Types

Name Value Valid Device State Description

DN_MASAvailChanged 04H Authenticated Device’s MAS availability information
has changed.

Table C-8. Device Notification Message Priority List

Device State Priority Device Notification

UnConnected 1 DN_Connect

UnAuthenticated 1 DN_EPRdy

Authenticated 1 DN_Disconnect

2 DN_MASAvailabilityChanged

3 DN_EPRdy

4 DN_Sleep

5 DN_Alive

Reconnecting 1 DN_Connect

Device Asleep 1 DN_Disconnect

2 DN_Sleep

3 DN_RemoteWakeup

4 DN_Alive

When a Self-beaconing device detects a change in its MAS availability, it must transmit a
DN_MASAvailChange notification so that the host can retrieve the updated MAS availability information by a
GetStatus request (see Section C.3.1). This Notification is only required for implementation by Self-Beaconing
devices.

Table C-9. Wireless USB Device MAS Availability Changed Notification Format

Offset Field Size Type Description

Wireless Universal Serial Bus Specification. Revision 1.1

 320

Offset Field Size Type Description

0 rWUSBHeader 2 Record See Table 7-48 for the default values in this
field.

2 bType 1 Constant The value of this field must be
DN_MASAvailChanged for a device MAS
Availability Changed notification.

 Maximum Retransmit Rate: a device should transmit this notification at every DNTS opportunity
provided by the host.

 Stop Retransmission Condition: a device will cease retransmission attempts of this notification when it
receives a GetStatus(MASAvailability) or 100 ms elapses, whichever comes first.

Note, a 1.1 host must receive DN_MASAvailabilityChanged notifications sent by the 1.0 device.

Note, a 1.1 device must be able to send DN_MASAvailabilityChanged notifications to the 1.0 host.

C.5. Channel Selection for Backwards Compatibility
Where permitted by national regulations, Wireless USB 1.1 Hosts must be able to operate in Band Group 1
using TF codes 1 to 7. Where permitted by national regulations, Wireless USB 1.1 Hosts must be able to
operate in Band Group 1 unless they are embedded host implementations.

Wireless Universal Serial Bus Specification, Revision 1.1

 321

Appendix D
UWB Channel Selection

This appendix specifies the Channel Selection requirements for hosts and devices that comply with the Wireless
USB specification, Revision 1.1.

D.1. Introduction

The PHY Specification [4] defines Band Groups and Channels. Band Groups are frequency ranges in groups of 3
bands (except for Band Group 5 which has only 2 bands), each 528MHz wide. Both single band (FFI) and multi-
band (TFI2 & TFI) channels are defined.

Under certain co-location conditions, simultaneous operation of devices on overlapping channels may cause
degradation of performance. The channel selection rules are intended to minimize this degradation, while supporting
a good balance between device range, device density, and self-organizing behavior.

D.2. Definitions
The terms TFC, TFI, FFI and TFI2 are used as defined in [4]. The MAC Specification [3] should be referenced for
terms not otherwise defined.

D.2.1 Overlapping and underlying channels
Two distinct UWB channels overlap if they share one or more UWB bands. A channel does not overlap itself.

UWB channel a underlies UWB channel b if channel a uses a strict subset of the bands of channel b. If a underlies b
then a and b overlap; and b does not underlie a.

Information on UWB channels and their use of UWB bands can be found in section 7.2 of [4]. Note that due to the
overlapping nature of Band Group 6 some channels have two identities; for instance FFI on band 9 is (Band Group
3, TFC 7) and (Band Group 6, TFC 5). Channel selection shall treat these as a single channel.

D.3. Data Structures

D.3.1 Use of MAC facilities

Channel selection makes use of the Application Specific IE facility of [3] to signal channel management commands.

The format of an Application Specific IE is defined by the MAC Specification as shown in Figure D-20.

octets: 1 1 2 N

Element ID
(=255)

Length
(=2+N)

Specifier ID
(=0x0102)

Application Specific Data

Figure D-20 General Format of ASIE

The value of the Specifier ID field in all ASIEs specified in the following sub-sections is set to 0x0102.

The Application Specific Data field carries commands as defined in the following sub-sections. All other command
field values are reserved, and shall be set to zero on transmit and ignored on receive.

Wireless Universal Serial Bus Specification. Revision 1.1

 322

D.3.2 Channel Descend Command

The Channel Descend command is formatted as shown in Figure D-.

1 1 1

Command
(= 0x01)

Countdown New Channel Number

Figure D-2 Channel Descend Command Format

The Command field is set to 0x01 to indicate a Channel Descend command.

The Countdown field is set to the number of superframes remaining until operation changes to the channel defined
in the New Channel Number field.

The New Channel Number field is set to the value of the PHY channel on which operation will continue after the
Channel Descend procedure has been followed.

D.3.3 Channel Selection Procedure
Wireless USB hosts and devices shall apply the following rules in selecting a channel on which to begin operation.
Any channel on which a host or device wants to operate is a target channel.

When selecting target channels, a Wireless USB device may be influenced by the presence of specific Wireless USB
hosts.

Wireless USB hosts may be influenced by many factors when selecting target channels, including the availability of
unused or unsafe MAS, the number of other Wireless USB hosts present, the expected range in each channel, and
the presence of specific Wireless USB devices.

The host/device shall scan its target channels and shall also scan all channels, in which it can operate and which
overlap the target channels, before it begins operation. Note that products may allow end-users to restrict the list of
target channels to a subset of the channels allowed by national regulations.

Each channel shall be scanned for at least one superframe duration or for at least two superframes if no beacon
frame is received.

If the host/device detects any Channel Descend Command IEs in any scanned channel then it shall wait until all
detected Channel Descend operations have completed and then restart the scanning procedure.

If no beacon activity is detected in any overlapping channel of a target channel, then the host/device may begin
MAC operation on the target channel in accordance with [3] section 8.2.3. Otherwise, the host/device shall initiate
the Channel Descend procedure (after beginning MAC operation) on all scanned, overlapping, non-FFI, channels in
which activity was detected.

 Section 7.7.1.3 defines reservation policy when operating in a channel.

If the channel scan reveals that no suitable channel can be found then the device may begin MAC operation on a
scanned non-FFI channel in which activity was detected and then initiate a Channel Descend procedure. This may
create an opportunity for the device to operate.

Neither a Wireless USB 1.0 host or nor a Wireless USB 1.0 device will not recognize the Channel Descend
procedure. For this reason the Channel Descend procedure shall not be initiated in any channel in which a Wireless
USB 1.0 host ordevice is detected.

The Channel Descend procedure shall only be initiated under the circumstances described here.

Wireless Universal Serial Bus Specification, Revision 1.1

 323

If at any time during operation the host or device can no longer operate successfully using its DRP allocation, it may
re-execute the Channel Selection procedure in order to create more favorable operating conditions.

D.3.4 Channel Descend Procedure

The Channel Descend procedure is a protocol for channel change in which devices change their PHY channel to
underlying or non-overlapping channels in a synchronized way. The Channel Descend procedure allows operation to
continue, without interruption in many cases, over the channel change. If there is no overlapped operation in
different UWB channels before the Channel Descend procedure then the Channel Descend procedure will not
introduce any overlapped operation. DRP reservations can survive the Channel Descend operation but devices
should be aware that link quality may not be identical in the source and destination channel.

D.3.5 Generation of Channel Descend command

A host or device may initiate the Channel Descend procedure as described in the Channel Selection procedure
(Section <ref D.5>) by including the Channel Descend command in its beacon. The parameters of the Channel
Descend command shall be set as follows:

The New Channel Number shall be set to any channel underlying the current channel

The Countdown field shall be set to mInitialDescendCountdown

If a host or device included a Channel Descend command in its last beacon with a Countdown field value greater
than 0 but received no Channel Descend commands from neighbors, it shall include the same Channel Descend in its
next beacon with the Countdown field decremented by 1.

D.3.6 Receipt of Channel Descend command

A) Upon receipt of a Channel Descend command with Countdown field equal to 0:

If the host ordevice did not include a Channel Descend command in its previous beacon;

or

If the host ordevice included a Channel Descend command in its previous beacon with Countdown
field set to 0 and with a New Channel Number identifying a PHY channel that overlaps the PHY
channel identified by the New Channel Number of the received Channel Descend command;

The host/device shall cease operation in this channel and it shall perform the Channel
Selection procedure (Section <ref D.5>) in order to continue operation.

Otherwise the host/device shall ignore receipt of the Channel Descend command. It shall continue
its Channel Descend operation with the Countdown decremented by 1.

B) Upon receipt of one or more Channel Descend commands with Countdown field value greater than 0:

B1) If the host or device did not include a Channel Descend command in its previous beacon:

The host or device shall include a Channel Descend command in its beacon in the following
superframe. The parameters of the Channel Descend command shall be set as follows:

Wireless Universal Serial Bus Specification. Revision 1.1

 324

A wireless USB device that received the Channel Descend command from the host to which it is
attached shall set the New Channel Number to the value received from its host.

A wireless USB host that received a New Channel Number from an attached device should consider
it with higher priority than other channels.

Otherwise the New Channel Number shall be set to the same value as the New Channel Number
field of one of the received Channel Descend commands or any underlying channel which does not
overlap the channel identified by any received Channel Descend command. If no such channel is
available then any underlying FFI channel may be selected. Note that the devices identifying
overlapping channel will be required to change their New Channel Number, based on the rule below
(B2) after the following superframe.

If the host or device selected the same New Channel Number as a channel identified by a received
Channel Descend command, then the Countdown field shall be set to one less than the value of
Countdown in that same received Channel Descend command.

Otherwise the Countdown field shall be set to mInitialDescendCountdown.

B2) If the host/device did include a Channel Descend command in its previous transmitted beacon:

If the transmitted New Channel Number identifies an FFI channel, and the device receives one or
more Channel Descend commands that identify a channel that overlaps the transmitted FFI
channel, then those received Channel Descend commands shall be ignored. It shall continue its
Channel Descend operation with the Countdown decremented by 1.

If the transmitted New Channel Number identifies a TFI2 channel, and the host or device receives
one or more Channel Descend commands with a New Channel Number that overlaps the
transmitted TFI2 channel, then it shall continue its Channel Descend operation with a New
Channel Number and Countdown set as though the device had not previously transmitted a
Channel Descend command, with the additional constraint that the New Channel Number shall
identify an FFI channel.

If the conditions above do not apply and if the host or device receives one or more Channel
Descend commands with the same New Channel Number and a higher Countdown than it
transmitted in its last beacon, it shall include the Channel Descend command in its beacon in the
following superframe, with the same New Channel Number and with Countdown set to one less
than the highest Countdown value received with New Channel Number identifying the same PHY
channel.

If the conditions above do not apply, and this device is a Wireless USB device, and a Channel
Descend command is received from the Wireless USB host to which it is attached, identifying a
New Channel Number different from the device’s New Channel Number, then it shall continue its
Channel Descend operation with the New Channel Number and Countdown values received from
the Wireless USB host, except that the Countdown is decremented by one.

If none of the above conditions apply and the transmitted Countdown is greater than zero, the
device shall continue its Channel Descend operation with the Countdown decremented by 1.

D.4. Completion of the Channel Descend procedure

At the end of the superframe in which the host or device transmitted a Channel Descend command with the
Countdown field set to 0, the host or device shall cease operation on the current channel and begin operation on the
channel it identified in the New Channel Number field.

Wireless Universal Serial Bus Specification, Revision 1.1

 325

The host or device may either begin operation on the new channel according to the procedures of [3] section 8.2.3 or
it may begin operation on the new channel as follows:

Its BPST shall retain the same alignment as on its previous channel

Its beacon slot shall be the same as the beacon slot of its last transmitted beacon on the prior channel

Its beacon shall carry DRP IEs identifying the same reservations with the same allocation field values as in
its last beacon transmitted on the prior channel

D.5. Channel Selection Policy Parameters

Parameter Description Value

mInitialDescendCountdown 3 x mMaxLostBeacons
Table D-1 CSP Parameters

